都不知道说什么好。。。咕咕到现在。。


求:$\sum_{i=1}^n \space k\space mod \space i$

即求:$n*k-\sum_{i=1}^n\space \lfloor \frac{k}{i} \rfloor *i$

我们发现,在一定范围内,$\lfloor \frac{k}{i} \rfloor$是不变的,那么此时相当于求一个等差数列。。。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#define ll long long
#define R register ll
static char B[<<],*S=B,*D=B;
#define getchar() (S==D&&(D=(S=B)+fread(B,1,1<<15,stdin),S==D)?EOF:*S++)
using namespace std;
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
} ll n,k,ans;
signed main() {
n=g(),k=g(); ans=n*k; for(R l=,r=;l<=n;l=r+) {
if(k/l) r=min(n,k/(k/l));//求出左右边界
else r=n;
ans-=(k/l)*(r-l+)*(l+r)>>;
} printf("%lld\n",ans);
}

2019.06.04

BZOJ 1257 [CQOI2007]余数之和 数学的更多相关文章

  1. bzoj 1257: [CQOI2007]余数之和 (数学+分块)

    Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值 其中k mod i表示k除以i的余数. 例如j(5 ...

  2. Bzoj 1257 [CQOI2007]余数之和 (整除分块)

    Bzoj 1257 [CQOI2007]余数之和 (整除分块) 题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1257 一道简单题. 题目 ...

  3. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  4. BZOJ 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 3769  Solved: 1734[Submit][St ...

  5. BZOJ 1257: [CQOI2007]余数之和sum( 数论 )

    n >= k 部分对答案的贡献为 k * (n - k) n < k 部分贡献为 ∑ (k - ⌊k / i⌋ * i)  = ∑  , ⌊k / i⌋ 相等的数是连续的一段, 此时这段连 ...

  6. BZOJ 1257: [CQOI2007]余数之和sum【神奇的做法,思维题】

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 4474  Solved: 2083[Submit][St ...

  7. BZOJ 1257: [CQOI2007]余数之和

    1257: [CQOI2007]余数之和 Time Limit: 5 Sec  Memory Limit: 128 MB Description 给出正整数n和k,计算j(n, k)=k mod 1 ...

  8. [BZOJ 1257] [CQOI2007] 余数之和sum 【数学】

    题目链接:BZOJ - 1257 题目分析 首先, a % b = a - (a/b) * b,那么答案就是 sigma(k % i) = n * k - sigma(k / i) * i     ( ...

  9. [原博客] BZOJ 1257 [CQOI2007] 余数之和

    题目链接题意: 给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9. 即 k mod 1 + k mod 2 + k mod 3 + … + k mo ...

随机推荐

  1. 【Jmeter源码解读】001——目录结构

    1.顶层目录 bin - 包含.bat 和 . sh 这些文件用于启动JMeter.同时也包含了ApacheJmeter.jar 和 相关的配置文件 build - build 脚本创建的目录,存放一 ...

  2. 注解@PostConstruct与@PreDestroy详解及实例

    Java EE5 引入了@PostConstruct和@PreDestroy这两个作用于Servlet生命周期的注解,实现Bean初始化之前和销毁之前的自定义操作.此文主要说明@PostConstru ...

  3. Spring 加载项目外部配置文件

    背景 在项目的部署过程中,一般是打成 war 或者 jar 包,这样一般存在两种问题: 即使是配置文件修改,也还需要整个项目重新打包和部署. 整个项目只有一套环境,不能切换. 针对上面的问题,可以使用 ...

  4. IPv4

    1.IPv4分类地址 PC0(192.168.0.1) 和PC1(172.168.0.1)如果要ping通的话需要设置各自网关 PC0  设置IP  和  默认网关=路由器设置IP 2.Gigabit ...

  5. SpringBoot或者SpringMVC 临时取消配置的视图页面的前后缀

    // 重定向到新的jsp页面return "redirect:/index.jsp"; // 请求转发到新的jsp页面 return "forward:/index.js ...

  6. python — 协程

    1. 协程 1.1 协程基础 1.协程 :能够在一个线程下的多个任务之间来回切换,那么每一个任务都是一个协程. 2.协程的优点: 1.一个线程中的阻塞都被其他的各种任务沾满了 2.让操作系统觉得这个线 ...

  7. 指针生成网络(Pointer-Generator-Network)原理与实战

    指针生成网络(Pointer-Generator-Network)原理与实战   阅读目录 0 前言 1 Baseline sequence-to-sequence 2 Pointer-Generat ...

  8. 怎样指定当前cookie不能通过js脚本获取

    所谓" 不能通过js脚本获取 " 主要指的是: 使用document.cookie / XMLHttpRequest对象 / Request API 等无法获取到当前cookie. ...

  9. docker部署redis

    镜像获取 docker pull redis:4.0 ##当前最新版本 docker images 启动 docker run --name redis-huiyuan -p : -v $PWD/da ...

  10. [转载]clip gradient抑制梯度爆炸

    [转载]clip gradient抑制梯度爆炸 来源:https://blog.csdn.net/u010814042/article/details/76154391 1.梯度爆炸的影响 在一个只有 ...