[题解] [CF451E] Devu and Flowers
题面
题解
就是一个求\(\sum_{i= 1}^{n}x _ i = m\)的不重复多重集的个数, 我们可以由容斥原理得到:
\]
数据范围中\(1\leq N\leq 20\)告诉了我们什么?
我们考虑枚举\(x = 0 \sim 2 ^ n - 1\), 设\(x\)在二进制表示下共有\(p\)位为1, 分别是\(i_1, i_2, i_3, \cdots, i_p\), 则这个\(x\)对答案的贡献就是
\]
注意到\(x\)为0时它对答案的贡献为\(C_{n + m - 1}^{n - 1}\)
还是因为\(N\)比较小, 我们可以将\(C_{n+m-1}^{n-1}\)转化为\(P_{n+m-1}^{n-1}/(n-1)!\)
由于\(P_{n+m-1}^{n-1}=(n+m-1)*(n+m-2)*\cdots*((n+m-1)-(n-1)+1)\), 再乘上一个\((n-1)!\)的逆元就可以算出来了, 最后对于每个\(x\)求个和即可
Code
#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <vector>
#define itn int
#define reaD read
#define mod 1000000007
#define int long long
using namespace std;
int n, m, f[22], inv[22], ans;
inline int read()
{
int x = 0, w = 1; char c = getchar();
while(c < '0' || c > '9') { if (c == '-') w = -1; c = getchar(); }
while(c >= '0' && c <= '9') { x = x * 10 + c - '0'; c = getchar(); }
return x * w;
}
int fpow(int x, int y)
{
int res = 1;
while(y)
{
if(y & 1) res = res * x % mod;
x = x * x % mod;
y >>= 1;
}
return res;
}
int lucas(int n, int m)
{
if(n < 0 || m < 0 || n < m) return 0;
n %= mod;
if(!n || !m) return 1;
int res = 1;
for(int i = n; i >= n - m + 1; i--) res = res * i % mod;
res = res * inv[m] % mod;
return res;
}
signed main()
{
n = read(); m = read(); inv[0] = 1;
for(int i = 1; i <= n; i++) f[i] = reaD();
for(int i = 1; i <= 20; i++) inv[i] = fpow(i, mod - 2);
for(int i = 1; i <= 20; i++) inv[i] = inv[i] * inv[i - 1] % mod;
for(int x = 0; x < (1 << n); x++)
{
if(!x) { ans = (ans + lucas(n + m - 1, n - 1)) % mod; continue; }
int num = n + m - 1, cnt = 0;
for(int i = 0; i < n; i++) if((x >> i) & 1) cnt++, num -= f[i + 1] + 1;
if(cnt % 2) ans = ((ans - lucas(num, n - 1)) % mod + mod) % mod;
else ans = (ans + lucas(num, n - 1)) % mod;
}
printf("%lld\n", ans);
return 0;
}
[题解] [CF451E] Devu and Flowers的更多相关文章
- CF451E Devu and Flowers 解题报告
CF451E Devu and Flowers 题意: \(Devu\)有\(N\)个盒子,第\(i\)个盒子中有\(c_i\)枝花.同一个盒子内的花颜色相同,不同盒子的花颜色不同.\(Devu\)要 ...
- CF451E Devu and Flowers(容斥)
CF451E Devu and Flowers(容斥) 题目大意 \(n\)种花每种\(f_i\)个,求选出\(s\)朵花的方案.不一定每种花都要选到. \(n\le 20\) 解法 利用可重组合的公 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- BZOJ1101 [POI2007]Zap 和 CF451E Devu and Flowers
Zap FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d.作为FGD的同学,FGD希望得到 ...
- Luogu CF451E Devu and Flowers 题解报告
题目传送门 [题目大意] 有n种颜色的花,第i种颜色的花有a[i]朵,从这些花中选m朵出来,问有多少种方案?答案对109+7取模 [思路分析] 这是一个多重集的组合数问题,答案就是:$$C_{n+m- ...
- CF451E Devu and Flowers(组合数)
题目描述 Devu想用花去装饰他的花园,他已经购买了n个箱子,第i个箱子有fi朵花,在同一个的箱子里的所有花是同种颜色的(所以它们没有任何其他特征).另外,不存在两个箱子中的花是相同颜色的. 现在De ...
- CF451E Devu and Flowers 数论
正解:容斥+Lucas定理+组合数学 解题报告: 传送门! 先mk个我不会的母函数的做法,,, 首先这个题的母函数是不难想到的,,,就$\left ( 1+x_{1}^{1}+x_{1}^{2}+. ...
- CF451E Devu and Flowers
多重集求组合数,注意到\(n = 20\)所以可以用\(2 ^ n * n\)的容斥来写. 如果没有限制那么答案就是\(C(n + s - 1, n - 1)\).对每一个限制依次考虑,加上有一种选多 ...
- CF451E Devu and Flowers (组合数学+容斥)
题目大意:给你$n$个箱子,每个箱子里有$a_{i}$个花,你最多取$s$个花,求所有取花的方案,$n<=20$,$s<=1e14$,$a_{i}<=1e12$ 容斥入门题目 把取花 ...
随机推荐
- HTTP缓存总结
在具体了解 HTTP 缓存之前先来明确几个术语:1.缓存命中率:从缓存中得到数据的请求数与所有请求数的比率.理想状态是越高越好.2.过期内容:超过设置的有效时间,被标记为“陈旧”的内容.通常过期内容不 ...
- 宝塔控制面板+wordpress搭建个人网站
上个月买了服务器和域名之后就搁置了,今天有空闲就来配合教程尝试一下搭建个人网站,下面是网站搭建的详细过程以及中间的一些细节问题,写这篇文章的目的就是希望能够帮到一些小伙伴,或者为以后搭建网站做一些参考 ...
- Cannot assign to read only property 'exports' of object at webpack ....BaseClient
网上找了很多资料说是import和export不能一起用,改代码 其实根本原因是es6和es5混合使用造成的兼容性问题 只需要配置.babelrc就可以了 首先安装 npm install -D tr ...
- 解决 'mvn' 不是内部或外部命令,也不是可运行的程序 或批处理文件。
'mvn' 不是内部或外部命令,也不是可运行的程序 或批处理文件. 九步完成
- laravel5.8 IoC 容器
网上 对容器的解释有很多,这里只是记录,搬运! 1.简单理解: 2019-10-10 11:24:09 解析 lavarel 容器 IoC 容器 作用 就是 “解耦” .“依赖注入(DI) IoC 容 ...
- C语言特殊函数的应用
1. va_list相关函数的学习: va_list是一种变参量的指针类型定义. va_list使用方法如下: 1)首先在函数中定义一个具有va_list型的变量,这个变量是指向参数的指针. 2)首先 ...
- 数据总线&地址总线&控制总线
数据总线 (1) 是CPU与内存或其他器件之间的数据传送的通道. (2)数据总线的宽度决定了CPU和外界的数据传送速度. (3)每条传输线一次只能传输1位二进制数据.eg: 8根数据线一次可传送一个8 ...
- mmu(虚拟地址和物理地址简单图解)
- npm run build后如何打开index.html跑起项目
Tip: built files are meant to be served over an HTTP server. Opening index.html over file:// won't ...
- 美登杯”上海市高校大学生程序设计邀请赛 Problem E 、 小 花梨 的数组 (线段树)
Problem E E . 小 花梨 的数组 时间限制:1000ms 空间限制:512MB Description 小花梨得到了一个长度为