题意

求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $19940417$ 取模。

分析:

由于取模可化成取整的形式,$k \ mod \ i = k - \left \lfloor \frac{k}{i} \right \rfloor * i$,详见BZOJ1257 余数之和

易知,$\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j) = \sum_{i=1}^n(n \ mod \ i)\sum_{j=1}^m(m \ mod \ j)$

所以答案为两部分余数和的乘积减去 $i$ 等于 $j$ 的情况,

当 $i=j$ 时,
$$
\begin{aligned}
\sum_{i=1}^{min(n,m)}(n \ mod \ i)(m \ mod \ i)  & = \sum_{i=1}^{min(n,m)}(n - \left \lfloor \frac{n}{i}  \right  \rfloor  i)(m - \left \lfloor \frac{m}{i} \right \rfloor  i) \\
&= \sum_{i=1}^{min(n,m)}(nm - m\left \lfloor \frac{n}{i} \right \rfloor  i - n\left \lfloor \frac{m}{i} \right \rfloor i + \left \lfloor \frac{n}{i} \right \rfloor \left \lfloor \frac{m}{i} \right \rfloor i^2)  \\
\end{aligned}$$

代码:

#include<bits/stdc++.h>
using namespace std; typedef long long ll;
const ll mod = ;
const ll inv6 = ;
ll n, m; //\sum_1^n [k/i]*i
ll S1(ll n, ll k)
{
ll ret = ;
if(k <= n) //需要分类讨论
{
for(ll i = ,j;i <= k;i = j+)
{
j = k / (k / i); ret = (ret + (i+j) * (j-i+) / % mod * (k / i) % mod) % mod;
}
}
else
{
for(ll i = ,j;i <= n;i = j+)
{
j = min(k / (k / i), n);
ret = (ret + (i+j) * (j-i+) / % mod * (k / i) % mod) % mod;
}
} return ret;
} ll S2(ll n)
{
n %= mod;
return n * (n+) % mod * (*n+) % mod * inv6 % mod;
} //[n/i][m/i]i^2
ll S3(ll n, ll m)
{
ll ret = ;
for(ll i = ,j;i <= min(n, m);i = j+)
{
j = min(n/(n/i), m/(m/i));
ret = (ret + (n/i) * (m/i) % mod * (S2(j) - S2(i-)) % mod) % mod;
}
return ret;
} int main()
{
scanf("%d%d", &n, &m);
if(m > n) swap(n, m);
ll ans = ;
ans = ans * (n*n%mod - S1(n, n) + mod) % mod;
ans = ans * (m*m%mod - S1(m, m) + mod) % mod;
ll ans2 = n *m % mod * m % mod;
ans2 = (ans2 - m * S1(m, n) % mod) % mod;
ans2 = (ans2 - n * S1(m, m) % mod) % mod;
ans2 = (ans2 + S3(n, m)) % mod;
//printf("%lld %lld\n", ans, ans2);
printf("%lld\n", (ans - ans2 + *mod) % mod);
return ;
}

参考链接:https://www.cnblogs.com/henry-1202/p/10201032.html

BZOJ2956: 模积和——整除分块的更多相关文章

  1. [Bzoj 2956] 模积和 (整除分块)

    整除分块 一般形式:\(\sum_{i = 1}^n \lfloor \frac{n}{i} \rfloor * f(i)\). 需要一种高效求得函数 \(f(i)\) 的前缀和的方法,比如等差等比数 ...

  2. BZOJ2956: 模积和(数论分块)

    题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...

  3. 【数论分块】bzoj2956: 模积和

    数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...

  4. BZOJ2956: 模积和

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  5. bzoj2956: 模积和(数论)

    先算出无限制的情况,再减去i==j的情况. 无限制的情况很好算,有限制的情况需要将式子拆开. 注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6 #include<i ...

  6. BZOJ 2956 模积和(分块)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2956 [题目大意] 求∑∑((n%i)*(m%j))其中1<=i<=n,1 ...

  7. ACM学习历程—BZOJ2956 模积和(数论)

    Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...

  8. P2260 [清华集训2012]模积和

    P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...

  9. 【BZOJ2956】模积和 分块

    [BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...

随机推荐

  1. 作为注册中心Eureka比Zookeeper好在哪里?

    作为注册中心Eureka比Zookeeper好在哪里?    著名的CAP理论指出,一个分布式系统不可能同时满足C(一致性),A(可用性)和P(分区容错性).由于分区容错性P在是分布式系统中必须要保证 ...

  2. java23种设计模式之十:责任链模式

    最近在学习netty中发现其中用到了责任链模式,然后结合自己在写代码中遇到了大量写if...else的情况,决定学习一下责任链模式. 一.什么样的场景下会选择用责任链模式 我们在进行业务逻辑判断时,需 ...

  3. SSM整合-配置文件

    使用工具:maven.idea.jdk8.mysql.tomcat9.0 初学ssm框架,配置文件的配置目录:                                     其中genera ...

  4. STM32之spi管理模式

    1)sip管理模式分为:硬件管理和软件管理:主要由NSS .SSI.SSM决定: NSS是芯片上一个实实在在的引脚,SSI和SSM是SPI_CR1控制器里的的位. 值得注意的是:NSS分外部引脚和内部 ...

  5. nginx 二级目录高级写法

    nginx二级目录高级配置: location ~ .*\.(html)$ { expires 1m; error_page 404 = /test/index.html; access_log /d ...

  6. PAT(B) 1063 计算谱半径(Java)

    题目链接:1063 计算谱半径 (20 point(s)) 题目描述 在数学中,矩阵的"谱半径"是指其特征值的模集合的上确界.换言之,对于给定的 n 个复数空间的特征值 { a​1 ...

  7. c++实现双端队列

    在使用c++容器的时候其底层如何实现  例如  vector 容器  :是一个内存可以二倍扩容的向量容器,使用方便但是对内存要求严格,弊端明显    list  容器  : 双向循环链表    deq ...

  8. Symmetric Order

    #include<stdio.h> int main() { ; ][]; ) { ;i<=n;i++) { scanf("%s",&str[i]); } ...

  9. 浅谈(IOC)依赖注入与控制反转(DI)

    前言:参考了百度文献和https://www.cnblogs.com/liuqifeng/p/11077592.html以及http://www.cnblogs.com/leoo2sk/archive ...

  10. oracle 根据时间字段查询

    oracle 根据时间字段查询数据 ROWNUM 是对前面查询的记录做限制,比如查询的记录 > 2000 条,那么只取前面的 2000 条 ''' SELECT * FROM (SELECT C ...