E. Connected Components?
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an undirected graph consisting of n vertices and  edges. Instead of giving you the edges that exist in the graph, we give you m unordered pairs (x, y) such that there is no edge between x and y, and if some pair of vertices is not listed in the input, then there is an edge between these vertices.

You have to find the number of connected components in the graph and the size of each component. A connected component is a set of vertices X such that for every two vertices from this set there exists at least one path in the graph connecting these vertices, but adding any other vertex to X violates this rule.

Input

The first line contains two integers n and m (1 ≤ n ≤ 200000, ).

Then m lines follow, each containing a pair of integers x and y (1 ≤ x, y ≤ nx ≠ y) denoting that there is no edge between x and y. Each pair is listed at most once; (x, y) and (y, x) are considered the same (so they are never listed in the same test). If some pair of vertices is not listed in the input, then there exists an edge between those vertices.

Output

Firstly print k — the number of connected components in this graph.

Then print k integers — the sizes of components. You should output these integers in non-descending order.

Example
input

Copy
5 5
1 2
3 4
3 2
4 2
2 5
output

Copy
2
1 4
题意:给出一个图的补图,求原图有几个连通块。
题解:用set维护没被访问过的节点,在dfs每一层用vector存储每个与节点相邻的节点,并从set里面删除这些节点,每个节点只会被访问一次,所以复杂度不会太大,尤其注意set删除迭代器位置元素的方法
 #include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int maxn=2e5+;
#define debug(x) cout<<"["<<#x<<"]"<<x<<endl;
struct edge{
int fr;
int to;
int nex;
}e[maxn<<];
set<int>st;
int cnt,colo[maxn],head[maxn],col[maxn],coloo[maxn];
void adde(int x,int y){
e[cnt].fr=x;
e[cnt].to=y;
e[cnt].nex=head[x];
head[x]=cnt++;
}
void dfs(int u,int fa,int c){
colo[u]=c;
coloo[c]++;
for(int i=head[u];i!=-;i=e[i].nex){
int v=e[i].to;
col[v]=u;
}
vector<int>g;
for(auto it=st.begin();it!=st.end();){
if(col[(*it)]!=u){
g.push_back((*it));
st.erase(it++);
}
else{
it++;
}
}
for(int i=;i<g.size();i++){
if(!colo[g[i]]){
dfs(g[i],u,c);
}
}
}
int main(){
int n,m;
memset(head,-,sizeof(head));
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)st.insert(i);
while(m--){
int a,b;
scanf("%d%d",&a,&b);
adde(a,b);
adde(b,a);
}
int ans=;
for(int i=;i<=n;i++){
if(!colo[i]){
ans++;
dfs(i,-,ans);
}
}
printf("%d\n",ans);
sort(coloo+,coloo++ans);
for(int i=;i<=ans;i++){
printf("%d",coloo[i]);
char cc=(i==ans)?'\n':' ';
printf("%c",cc);
}
return ;
}

set正确的删除元素的方法

     for(auto it=st.begin();it!=st.end();){
if(col[(*it)]!=u){
g.push_back((*it));
st.erase(it++);
}
else{
it++;
}
}

错误的删除方法

     for(auto it=st.begin();it!=st.end();it++){
if(col[(*it)]!=u){
g.push_back((*it));
st.erase(it);
}
}

[cf920E][set+dfs]的更多相关文章

  1. BZOJ 3083: 遥远的国度 [树链剖分 DFS序 LCA]

    3083: 遥远的国度 Time Limit: 10 Sec  Memory Limit: 1280 MBSubmit: 3127  Solved: 795[Submit][Status][Discu ...

  2. BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]

    1103: [POI2007]大都市meg Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2221  Solved: 1179[Submit][Sta ...

  3. BZOJ 4196: [Noi2015]软件包管理器 [树链剖分 DFS序]

    4196: [Noi2015]软件包管理器 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1352  Solved: 780[Submit][Stat ...

  4. 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)

    图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...

  5. BZOJ 2434: [Noi2011]阿狸的打字机 [AC自动机 Fail树 树状数组 DFS序]

    2434: [Noi2011]阿狸的打字机 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2545  Solved: 1419[Submit][Sta ...

  6. POJ_2386 Lake Counting (dfs 错了一个负号找了一上午)

    来之不易的2017第一发ac http://poj.org/problem?id=2386 Lake Counting Time Limit: 1000MS   Memory Limit: 65536 ...

  7. 深度优先搜索(DFS)

    [算法入门] 郭志伟@SYSU:raphealguo(at)qq.com 2012/05/12 1.前言 深度优先搜索(缩写DFS)有点类似广度优先搜索,也是对一个连通图进行遍历的算法.它的思想是从一 ...

  8. 【BZOJ-3779】重组病毒 LinkCutTree + 线段树 + DFS序

    3779: 重组病毒 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 224  Solved: 95[Submit][Status][Discuss] ...

  9. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

随机推荐

  1. LeetCode 206. 反转链表(Reverse Linked List) 16

    206. 反转链表 206. Reverse Linked List 题目描述 反转一个单链表. 每日一算法2019/5/19Day 16LeetCode206. Reverse Linked Lis ...

  2. LocalDate LocalTime LocalDateTime Instant的操作与使用

    一.简介 LocalDate表示当前(或指定)日期,格式为:yyyy-MM-dd LocalTime表示当前(或指定)时间,格式为:HH:mm:ss SSS LocalDateTime表示当前(或指定 ...

  3. 《Mysql - 读写分离有哪些坑?》

    一:读写分离 - 概念 -  读写分离的主要目标就是分摊主库的压力. - 基本架构 -     -  二:两种读写分离的架构特点 - 客户端直连方案 - 因为少了一层 proxy 转发,所以查询性能稍 ...

  4. LaTeX 课本、LaTeX 学习方法、LaTeX 入门(2)

    1. 关于TeX,LaTeX,MikTex,CTeX等的区别 2. 课本 课本1 >> 下载链接:复制链接到迅雷或IDM下载很快 课本2 >> 下载链接:复制链接到迅雷或IDM ...

  5. STM32之spi管理模式

    1)sip管理模式分为:硬件管理和软件管理:主要由NSS .SSI.SSM决定: NSS是芯片上一个实实在在的引脚,SSI和SSM是SPI_CR1控制器里的的位. 值得注意的是:NSS分外部引脚和内部 ...

  6. nohup 命令

    nohup command > myout.file 2>&1 & 指定nohup.out的文件名 jobs -l 查看后台命令

  7. CH09 开机自动烧录QSPI

    版本信息: 版本 REV2018 时间 05/22/2018       XILINX ZYNQ LINUX篇 基于米联MZ7X系列                       电子版自学资料   常 ...

  8. 使用babel es6 转 es5

    安装 //Webpack 接入 Babel 必须依赖的模块 npm i -D babel-core babel-loader //preset,告诉babel编译的文件中用到了哪些语法env包含当前所 ...

  9. consul客户端配置微服务实例名称和ID

    consul客户端必须配置微服务实例名称和ID,微服务启动的时候需要将名称和ID注册到注册中心,后续微服务之间调用也需要用到. 名称可以通过以下两种方式配置,优先级从高到低.两个都不配置则默认服务名称 ...

  10. JavaDoc工具和Ideade javadoc工具

    命令参考: javadoc -locale zh_CN -protected -notree -nonavbar -noindex -use -author -version -encoding UT ...