【概率论】3-8:随机变量函数(Functions of a Random Variable)
title: 【概率论】3-8:随机变量函数(Functions of a Random Variable)
categories:
- Mathematic
- Probability
keywords: - The Probability Integral Transformation
- 概率积分变换
- Simulation
- 仿真
- Pseudo-Random Numbers
- 伪随机数
- General Function
toc: true
date: 2018-03-16 09:49:24
Abstract: 本文介绍通过函数这个工具,来研究随机变量
Keywords: The Probability Integral Transformation,Simulation,Pseudo-Random Numbers,General Function
开篇废话
我们到目前为止对概率的研究经过了试验结果,事件,随机变量大概这三个过程,其实每个过程都是更高层的抽象,比如,对于直观的事实,实验结果,我们通过一种函数,或者称为一种收集,将结果抽象成了事件,而对事件研究了一段时间后又将事件通过函数(随机变量)映射到了实数域,整个过程,更加抽象,更加复杂,但是计算和模拟现实中的试验结果变得更加容易更加准确。
对于实数的研究,函数是绕不开的话题,而函数的微分积分等又是现代科学的基础,所以本文简要的介绍下随机变量的函数。
问题的描述变成了当我们已知一个随机变量 XXX 具有某个p.f. 或者 p.d.f 那么随机变量 Y=f(x)Y=f(x)Y=f(x) 分布是什么。
Random Variable with a Discrete Distribution
先看一个例子:
离散随机变量 XXX 在 [1,…,9][1,\dots ,9][1,…,9] 有一个均匀分布,我们关系的是随机变量距离区间中心5的距离Y的分布情况。
这时候 YYY 的定义的数学化表示是: Y=∣X−5∣Y=|X-5|Y=∣X−5∣ 其分布函数不太好写,但是可以列举出来:
Y∈{0,1,2,3,4}Pr(Y=1)=Pr(X∈4,6)=29Pr(Y=2)=Pr(X∈3,7)=29Pr(Y=3)=Pr(X∈2,8)=29Pr(Y=4)=Pr(X∈1,9)=29Pr(Y=0)=Pr(X∈5)=19
Y\in \{0,1,2,3,4\}\\
Pr(Y=1)=Pr(X\in {4,6})=\frac{2}{9}\\
Pr(Y=2)=Pr(X\in {3,7})=\frac{2}{9}\\
Pr(Y=3)=Pr(X\in {2,8})=\frac{2}{9}\\
Pr(Y=4)=Pr(X\in {1,9})=\frac{2}{9}\\
Pr(Y=0)=Pr(X\in {5})=\frac{1}{9}\\
Y∈{0,1,2,3,4}Pr(Y=1)=Pr(X∈4,6)=92Pr(Y=2)=Pr(X∈3,7)=92Pr(Y=3)=Pr(X∈2,8)=92Pr(Y=4)=Pr(X∈1,9)=92Pr(Y=0)=Pr(X∈5)=91
这就是一个最简单的例子,关于离散随机变量的函数的分布问题。
Theorem Function of a Discrete Random Variable. Let XXX have a discrete distribution with p.f. fff and let Y=r(X)Y=r(X)Y=r(X) for some function of rrr defined on the set of possible values of XXX For each possible value y of YYY the p.f. ggg of YYY is
g(y)=Pr(Y=y)=Pr[r(X)=y]=∑x;r(x)=yf(x)
g(y)=Pr(Y=y)=Pr[r(X)=y]=\sum_{x;r(x)=y}f(x)
g(y)=Pr(Y=y)=Pr[r(X)=y]=x;r(x)=y∑f(x)
解读下上面的公式,其实公式写的很清楚,当我们知道函数r了以后,满足 r(X)=yr(X)=yr(X)=y 的所有X对应的概率最后组合成了Y,所以要进行求和,其实这一步跟从试验结果得到事件的过程是一样的。但是下面对于连续分布来说,就非常不一样了。
以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-3-8-Fuctions-of-a-Random-Variable转载请标明出处
【概率论】3-8:随机变量函数(Functions of a Random Variable)的更多相关文章
- 【概率论】3-9:多随机变量函数(Functions of Two or More Random Variables)
title: [概率论]3-9:多随机变量函数(Functions of Two or More Random Variables) categories: - Mathematic - Probab ...
- 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part II)
title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part II) categories: - Mathematic - Pro ...
- 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part I)
title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part I) categories: - Mathematic - Prob ...
- asp.net MVC helper 和自定义函数@functions小结
asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...
- asp.net MVC 自定义@helper 和自定义函数@functions小结
asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...
- 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的分布
在讨论连续型随机变量函数的分布时,我们从一般的情况中(讨论正态分布的文章中提及),能够得到简化版模型. 回忆利用分布函数和概率密度的关系求解随机变量函数分布的过程,有Y=g(x),如果g(x)是严格单 ...
- 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的期望
在关于离散型随机变量函数的期望的讨论中,我们很容易就得到了如下的等式: 那么推广到连续型随机变量,是否也存在类似的规律呢? 即对于连续型随机变量函数的期望,有: 这里给出一个局部的证明过程,完整的证明 ...
- 【Swift】 - 函数(Functions)总结 - 比较 与 C# 的异同
1.0 函数的定义与调用( Defining and Calling Functions ) 习惯了C#了语法,看到下面的这样定义输入参数实在感到非常别扭,func 有点 Javascript的感觉, ...
- [转]asp.net MVC helper 和自定义函数@functions小结
本文转自:http://www.cnblogs.com/jiagoushi/p/3904995.html asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的 ...
随机推荐
- jq勾选
1.取消勾选 $("box").attr("checked", false); 2.勾选 $("kbox").attr("chec ...
- java获取端口号,不用request
Integer port = null; MBeanServer mBeanServer = null; List<MBeanServer> mBeanServers = MBeanSer ...
- css 动画(二) transition 过渡 & animation 动画
前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! translate:平移:是transform的一个属性: transform:变形:是一个静态属性,可以 ...
- poj 3069 继续弱鸡的贪心
题意:给出指路石的范围,问最小需要几个指路石可以覆盖所有的军队. 题解:排序一遍,然后扫出起始区间和终止区间,就可以求出最小的覆盖数了 ac代码: #include <iostream> ...
- Java Convention 公约数计算
Java Convention 公约数计算 /** * <html> * <body> * <P> Copyright 1994-2018 JasonInterna ...
- 路由器开源系统openwrt配置页面定制
1. 新建虚拟机,百度文库有一篇<使用VMware安装OpenWrt>,地址:http://wenku.baidu.com/link?url=NkvaQpTf2dR8FpYn7JD9A7- ...
- MySql翻页查询
分页查询在网页中随处可见,那原理是什么呢?下面简单介绍一下基于MySql数据库的limit实现方法. 首先明确为什么要使用分页查询,因为数据庞大,查询不可能全部显示在页面上,如果全部显示在页面上,也会 ...
- Linux 命令实战
命令登录 ssh UserName@RemoteIP ssh seemmo@192.168.0.1 统计文件.目录的数量 统计当前目录下文件数量:ls -l | grep "^- ...
- mysql 创建用户,授权,查询用户等
MySQL创建用户与授权 一. 创建用户 命令: CREATE USER 'username'@'host' IDENTIFIED BY 'password'; 说明: username:你将创建的用 ...
- 自适应高度文本框 react contenteditable
import React, { Component } from 'react'; import PropTypes from 'prop-types'; const reduceTargetKeys ...