title: 【概率论】3-8:随机变量函数(Functions of a Random Variable)

categories:

  • Mathematic
  • Probability

    keywords:
  • The Probability Integral Transformation
  • 概率积分变换
  • Simulation
  • 仿真
  • Pseudo-Random Numbers
  • 伪随机数
  • General Function

    toc: true

    date: 2018-03-16 09:49:24



Abstract: 本文介绍通过函数这个工具,来研究随机变量

Keywords: The Probability Integral Transformation,Simulation,Pseudo-Random Numbers,General Function

开篇废话

我们到目前为止对概率的研究经过了试验结果,事件,随机变量大概这三个过程,其实每个过程都是更高层的抽象,比如,对于直观的事实,实验结果,我们通过一种函数,或者称为一种收集,将结果抽象成了事件,而对事件研究了一段时间后又将事件通过函数(随机变量)映射到了实数域,整个过程,更加抽象,更加复杂,但是计算和模拟现实中的试验结果变得更加容易更加准确。

对于实数的研究,函数是绕不开的话题,而函数的微分积分等又是现代科学的基础,所以本文简要的介绍下随机变量的函数。

问题的描述变成了当我们已知一个随机变量 XXX 具有某个p.f. 或者 p.d.f 那么随机变量 Y=f(x)Y=f(x)Y=f(x) 分布是什么。

Random Variable with a Discrete Distribution

先看一个例子:

离散随机变量 XXX 在 [1,…,9][1,\dots ,9][1,…,9] 有一个均匀分布,我们关系的是随机变量距离区间中心5的距离Y的分布情况。

这时候 YYY 的定义的数学化表示是: Y=∣X−5∣Y=|X-5|Y=∣X−5∣ 其分布函数不太好写,但是可以列举出来:

Y∈{0,1,2,3,4}Pr(Y=1)=Pr(X∈4,6)=29Pr(Y=2)=Pr(X∈3,7)=29Pr(Y=3)=Pr(X∈2,8)=29Pr(Y=4)=Pr(X∈1,9)=29Pr(Y=0)=Pr(X∈5)=19
Y\in \{0,1,2,3,4\}\\
Pr(Y=1)=Pr(X\in {4,6})=\frac{2}{9}\\
Pr(Y=2)=Pr(X\in {3,7})=\frac{2}{9}\\
Pr(Y=3)=Pr(X\in {2,8})=\frac{2}{9}\\
Pr(Y=4)=Pr(X\in {1,9})=\frac{2}{9}\\
Pr(Y=0)=Pr(X\in {5})=\frac{1}{9}\\
Y∈{0,1,2,3,4}Pr(Y=1)=Pr(X∈4,6)=92​Pr(Y=2)=Pr(X∈3,7)=92​Pr(Y=3)=Pr(X∈2,8)=92​Pr(Y=4)=Pr(X∈1,9)=92​Pr(Y=0)=Pr(X∈5)=91​

这就是一个最简单的例子,关于离散随机变量的函数的分布问题。

Theorem Function of a Discrete Random Variable. Let XXX have a discrete distribution with p.f. fff and let Y=r(X)Y=r(X)Y=r(X) for some function of rrr defined on the set of possible values of XXX For each possible value y of YYY the p.f. ggg of YYY is

g(y)=Pr(Y=y)=Pr[r(X)=y]=∑x;r(x)=yf(x)
g(y)=Pr(Y=y)=Pr[r(X)=y]=\sum_{x;r(x)=y}f(x)
g(y)=Pr(Y=y)=Pr[r(X)=y]=x;r(x)=y∑​f(x)

解读下上面的公式,其实公式写的很清楚,当我们知道函数r了以后,满足 r(X)=yr(X)=yr(X)=y 的所有X对应的概率最后组合成了Y,所以要进行求和,其实这一步跟从试验结果得到事件的过程是一样的。但是下面对于连续分布来说,就非常不一样了。

以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-3-8-Fuctions-of-a-Random-Variable转载请标明出处

【概率论】3-8:随机变量函数(Functions of a Random Variable)的更多相关文章

  1. 【概率论】3-9:多随机变量函数(Functions of Two or More Random Variables)

    title: [概率论]3-9:多随机变量函数(Functions of Two or More Random Variables) categories: - Mathematic - Probab ...

  2. 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part II)

    title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part II) categories: - Mathematic - Pro ...

  3. 【概率论】4-1:随机变量的期望(The Expectation of a Random Variable Part I)

    title: [概率论]4-1:随机变量的期望(The Expectation of a Random Variable Part I) categories: - Mathematic - Prob ...

  4. asp.net MVC helper 和自定义函数@functions小结

    asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...

  5. asp.net MVC 自定义@helper 和自定义函数@functions小结

    asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的切换,大大提升了我们的开发效率.但是Razor语法还是有一些棉花糖值得我们了解一下,可以更加强劲的提升我们 ...

  6. 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的分布

    在讨论连续型随机变量函数的分布时,我们从一般的情况中(讨论正态分布的文章中提及),能够得到简化版模型. 回忆利用分布函数和概率密度的关系求解随机变量函数分布的过程,有Y=g(x),如果g(x)是严格单 ...

  7. 《A First Course in Probability》-chaper5-连续型随机变量-随机变量函数的期望

    在关于离散型随机变量函数的期望的讨论中,我们很容易就得到了如下的等式: 那么推广到连续型随机变量,是否也存在类似的规律呢? 即对于连续型随机变量函数的期望,有: 这里给出一个局部的证明过程,完整的证明 ...

  8. 【Swift】 - 函数(Functions)总结 - 比较 与 C# 的异同

    1.0 函数的定义与调用( Defining and Calling Functions ) 习惯了C#了语法,看到下面的这样定义输入参数实在感到非常别扭,func 有点 Javascript的感觉, ...

  9. [转]asp.net MVC helper 和自定义函数@functions小结

    本文转自:http://www.cnblogs.com/jiagoushi/p/3904995.html asp.net Razor 视图具有.cshtml后缀,可以轻松的实现c#代码和html标签的 ...

随机推荐

  1. MySQL 使用tee记录语句和输出日志

    在mysql命令行中,使用tee命令,可以记录语句和输出到指定文件.在debugging时会很有用.每执行一条语句,mysql都会讲执行结果刷新到指定文件.Tee功能只在交互模式生效. mysql&g ...

  2. atomikos 优化JDBC性能

    JDBC performance comes for free with our pooling DataSource classes: AtomikosDataSourceBean for XA-e ...

  3. Abp 领域事件简单实践 <三> 自定义事件

    熵片用到的  EntityCreatedEventData<TEntity>,继承自EventData. 我们可以自定义事件: public class TestEvent: EventD ...

  4. 傅里叶变换通俗解释及快速傅里叶变换的python实现

    通俗理解傅里叶变换,先看这篇文章傅里叶变换的通俗理解! 接下来便是使用python进行傅里叶FFT-频谱分析: 一.一些关键概念的引入 1.离散傅里叶变换(DFT) 离散傅里叶变换(discrete ...

  5. Unity使用Resources读取Resources路径下的二进制文件(Binary Data)必须使用 .bytes扩展名

    将某二进制文件放在Resources目录下,希望用Resources.Load<TextAsset>的方式读取,发现TextAsset是null 查阅Unity文档得知,使用Resourc ...

  6. Android开发中常见问题分析及解决

    最近公司有新的业务需求,需要开发一款APP,因为我开发过Android APP(我想告诉他们,那是4年前的事了,嘤嘤嘤),就把开发任务交给我了,当然也不是我一个人啦,让我组开发小组,说白了,就是让我来 ...

  7. c#开启线程池超出索引

    这样写会超出索引,foreach好像不会超出,原因可能是开启线程池需要时间,成功开启之后,一次循环已经结束,这个没有验证. 以下这个做法是不对的,我也是看网上的贴这样写,结果是少执行了一个.推荐大家还 ...

  8. linux内存管理初学

    虚拟内存模型 Linux 内核本身并不运行在虚拟空间中,其使用的是物理寻址模式. 物理内存被分割为界面,一个内存页面的大小由PAGE_SIZE宏决定. 虚拟地址空间的方式使程序员可以将巨大的结构用于连 ...

  9. oracle通过一个字段分组,取另一个字段的最大值

    select * from bdcdj.lqentry1 a  where 顺序号 in (select max(顺序号) from bdcdj.lqentry1 b WHERE b.archival ...

  10. win10关闭防火墙和其通知

    Win10电脑在关闭防火墙后,防火墙的通知会不定期提醒,如果误点后,防火墙就悄悄的开启了,导致好多功能就用不了了,所以比较有效的方法是:关闭防火墙,并关闭防火墙通知 1.关闭防火墙 在控制面板中,选择 ...