小结:

1、
在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况;
2、
Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符);
3、
虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单
4、
Redis 会优先选择时间复杂度为 O(1) 的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 O(n),并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。

https://mp.weixin.qq.com/s/ySG2Qtitr6b8Zcb-SAMnGQ

Redis 和 I/O 多路复用

https://draveness.me/redis-io-multiplexing

Redis 单线程却能支撑高并发 - 简书
https://www.jianshu.com/p/2d293482f272

Redis 单线程却能支撑高并发

若丨寒  关注

 11.7 2019.05.02 20:46* 字数 2000 阅读 2431评论 6喜欢 106

最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适合阅读和分析,其中 I/O 多路复用(mutiplexing)部分的实现非常干净和优雅,在这里想对这部分的内容进行简单的整理。

几种 I/O 模型

为什么 Redis 中要使用 I/O 多路复用这种技术呢?

首先,Redis 是跑在单线程中的,所有的操作都是按照顺序线性执行的,但是由于读写操作等待用户输入或输出都是阻塞的,所以 I/O 操作在一般情况下往往不能直接返回,这会导致某一文件的 I/O 阻塞导致整个进程无法对其它客户提供服务,而 I/O 多路复用就是为了解决这个问题而出现的。

Blocking I/O

先来看一下传统的阻塞 I/O 模型到底是如何工作的:当使用 read 或者 write 对某一个文件描述符(File Descriptor 以下简称 FD)进行读写时,如果当前 FD 不可读或不可写,整个 Redis 服务就不会对其它的操作作出响应,导致整个服务不可用。

这也就是传统意义上的,也就是我们在编程中使用最多的阻塞模型:

 

阻塞模型虽然开发中非常常见也非常易于理解,但是由于它会影响其他 FD 对应的服务,所以在需要处理多个客户端任务的时候,往往都不会使用阻塞模型。

I/O 多路复用

虽然还有很多其它的 I/O 模型,但是在这里都不会具体介绍。

阻塞式的 I/O 模型并不能满足这里的需求,我们需要一种效率更高的 I/O 模型来支撑 Redis 的多个客户(redis-cli),这里涉及的就是 I/O 多路复用模型了:

 

在 I/O 多路复用模型中,最重要的函数调用就是 select,该方法的能够同时监控多个文件描述符的可读可写情况,当其中的某些文件描述符可读或者可写时, select 方法就会返回可读以及可写的文件描述符个数。

关于 select 的具体使用方法,在网络上资料很多,这里就不过多展开介绍了;

与此同时也有其它的 I/O 多路复用函数 epoll/kqueue/evport,它们相比 select 性能更优秀,同时也能支撑更多的服务。

Reactor 设计模式

Redis 服务采用 Reactor 的方式来实现文件事件处理器(每一个网络连接其实都对应一个文件描述符)

 

文件事件处理器使用 I/O 多路复用模块同时监听多个 FD,当 accept、 read、 write和 close 文件事件产生时,文件事件处理器就会回调 FD 绑定的事件处理器。

虽然整个文件事件处理器是在单线程上运行的,但是通过 I/O 多路复用模块的引入,实现了同时对多个 FD 读写的监控,提高了网络通信模型的性能,同时也可以保证整个 Redis 服务实现的简单。

I/O 多路复用模块

I/O 多路复用模块封装了底层的 select、 epoll、 avport 以及 kqueue 这些 I/O 多路复用函数,为上层提供了相同的接口。

 

在这里我们简单介绍 Redis 是如何包装 select 和 epoll 的,简要了解该模块的功能,整个 I/O 多路复用模块抹平了不同平台上 I/O 多路复用函数的差异性,提供了相同的接口:

static  int aeApiCreate(aeEventLoop *eventLoop)

static  int aeApiResize(aeEventLoop *eventLoop,  int setsize)

static  void aeApiFree(aeEventLoop *eventLoop)

static  int aeApiAddEvent(aeEventLoop *eventLoop,  int fd,  int mask)

static  void aeApiDelEvent(aeEventLoop *eventLoop,  int fd,  int mask)

static  int aeApiPoll(aeEventLoop *eventLoop,  struct timeval *tvp)

同时,因为各个函数所需要的参数不同,我们在每一个子模块内部通过一个 aeApiState来存储需要的上下文信息:

// select

typedef  struct aeApiState {

fd_set rfds, wfds;

fd_set _rfds, _wfds;

} aeApiState;

// epoll

typedef  struct aeApiState {

int epfd;

struct epoll_event *events;

} aeApiState;

这些上下文信息会存储在 eventLoop 的 void*state 中,不会暴露到上层,只在当前子模块中使用。

封装 select 函数

select 可以监控 FD 的可读、可写以及出现错误的情况。

在介绍 I/O 多路复用模块如何对 select 函数封装之前,先来看一下 select 函数使用的大致流程:

int fd =  /* file descriptor */

fd_set rfds;

FD_ZERO(&rfds);

FD_SET(fd,  &rfds)

for  (  ;  ;  )  {

select(fd+1,  &rfds, NULL, NULL, NULL);

if  (FD_ISSET(fd,  &rfds))  {

/* file descriptor `fd` becomes readable */

}

}
  1. 初始化一个可读的 fd_set 集合,保存需要监控可读性的 FD;
  2. 使用 FD_SET 将 fd 加入 rfds
  3. 调用 select 方法监控 rfds 中的 FD 是否可读;
  4. 当 select 返回时,检查 FD 的状态并完成对应的操作。

而在 Redis 的 ae_select 文件中代码的组织顺序也是差不多的,首先在 aeApiCreate 函数中初始化 rfds 和 wfds

static  int aeApiCreate(aeEventLoop *eventLoop)  {

aeApiState *state = zmalloc(sizeof(aeApiState));

if  (!state)  return  -1;

FD_ZERO(&state->rfds);

FD_ZERO(&state->wfds);

eventLoop->apidata = state;

return  0;

}

而 aeApiAddEvent 和 aeApiDelEvent 会通过 FD_SET 和 FD_CLR 修改 fd_set 中对应 FD 的标志位:

static  int aeApiAddEvent(aeEventLoop *eventLoop,  int fd,  int mask)  {

aeApiState *state = eventLoop->apidata;

if  (mask & AE_READABLE) FD_SET(fd,&state->rfds);

if  (mask & AE_WRITABLE) FD_SET(fd,&state->wfds);

return  0;

}

整个 ae_select 子模块中最重要的函数就是 aeApiPoll,它是实际调用 select 函数的部分,其作用就是在 I/O 多路复用函数返回时,将对应的 FD 加入 aeEventLoop 的 fired数组中,并返回事件的个数:

static  int aeApiPoll(aeEventLoop *eventLoop,  struct timeval *tvp)  {

aeApiState *state = eventLoop->apidata;

int retval, j, numevents =  0;

memcpy(&state->_rfds,&state->rfds,sizeof(fd_set));

memcpy(&state->_wfds,&state->wfds,sizeof(fd_set));

retval =  select(eventLoop->maxfd+1,

&state->_rfds,&state->_wfds,NULL,tvp);

if  (retval >  0)  {

for  (j =  0; j <= eventLoop->maxfd; j++)  {

int mask =  0;

aeFileEvent *fe =  &eventLoop->events[j];

if  (fe->mask == AE_NONE)  continue;

if  (fe->mask & AE_READABLE && FD_ISSET(j,&state->_rfds))

mask |= AE_READABLE;

if  (fe->mask & AE_WRITABLE && FD_ISSET(j,&state->_wfds))

mask |= AE_WRITABLE;

eventLoop->fired[numevents].fd = j;

eventLoop->fired[numevents].mask = mask;

numevents++;

}

}

return numevents;

}

封装 epoll 函数

Redis 对 epoll 的封装其实也是类似的,使用 epoll_create 创建 epoll 中使用的 epfd

static  int aeApiCreate(aeEventLoop *eventLoop)  {

aeApiState *state = zmalloc(sizeof(aeApiState));

if  (!state)  return  -1;

state->events = zmalloc(sizeof(struct epoll_event)*eventLoop->setsize);

if  (!state->events)  {

zfree(state);

return  -1;

}

state->epfd = epoll_create(1024);  /* 1024 is just a hint for the kernel */

if  (state->epfd ==  -1)  {

zfree(state->events);

zfree(state);

return  -1;

}

eventLoop->apidata = state;

return  0;

}

在 aeApiAddEvent 中使用 epoll_ctl 向 epfd 中添加需要监控的 FD 以及监听的事件:

static  int aeApiAddEvent(aeEventLoop *eventLoop,  int fd,  int mask)  {

aeApiState *state = eventLoop->apidata;

struct epoll_event ee =  {0};  /* avoid valgrind warning */

/* If the fd was already monitored for some event, we need a MOD

* operation. Otherwise we need an ADD operation. */

int op = eventLoop->events[fd].mask == AE_NONE ?

EPOLL_CTL_ADD : EPOLL_CTL_MOD;

ee.events =  0;

mask |= eventLoop->events[fd].mask;  /* Merge old events */

if  (mask & AE_READABLE) ee.events |= EPOLLIN;

if  (mask & AE_WRITABLE) ee.events |= EPOLLOUT;

ee.data.fd = fd;

if  (epoll_ctl(state->epfd,op,fd,&ee)  ==  -1)  return  -1;

return  0;

}

由于 epoll 相比 select 机制略有不同,在 epoll_wait 函数返回时并不需要遍历所有的 FD 查看读写情况;在 epoll_wait 函数返回时会提供一个 epoll_event 数组:

typedef  union epoll_data {

void *ptr;

int fd;  /* 文件描述符 */

uint32_t u32;

uint64_t u64;

}  epoll_data_t;

struct epoll_event {

uint32_t events;  /* Epoll 事件 */

epoll_data_t data;

};

其中保存了发生的 epoll 事件( EPOLLIN、 EPOLLOUT、 EPOLLERR 和 EPOLLHUP)以及发生该事件的 FD。

aeApiPoll 函数只需要将 epoll_event 数组中存储的信息加入 eventLoop 的 fired 数组中,将信息传递给上层模块:

static  int aeApiPoll(aeEventLoop *eventLoop,  struct timeval *tvp)  {

aeApiState *state = eventLoop->apidata;

int retval, numevents =  0;

retval = epoll_wait(state->epfd,state->events,eventLoop->setsize,

tvp ?  (tvp->tv_sec*1000  + tvp->tv_usec/1000)  :  -1);

if  (retval >  0)  {

int j;

numevents = retval;

for  (j =  0; j < numevents; j++)  {

int mask =  0;

struct epoll_event *e = state->events+j;

if  (e->events & EPOLLIN) mask |= AE_READABLE;

if  (e->events & EPOLLOUT) mask |= AE_WRITABLE;

if  (e->events & EPOLLERR) mask |= AE_WRITABLE;

if  (e->events & EPOLLHUP) mask |= AE_WRITABLE;

eventLoop->fired[j].fd = e->data.fd;

eventLoop->fired[j].mask = mask;

}

}

return numevents;

}

子模块的选择

因为 Redis 需要在多个平台上运行,同时为了最大化执行的效率与性能,所以会根据编译平台的不同选择不同的 I/O 多路复用函数作为子模块,提供给上层统一的接口;在 Redis 中,我们通过宏定义的使用,合理的选择不同的子模块:

#ifdef HAVE_EVPORT

#include  "ae_evport.c"

#else

#ifdef HAVE_EPOLL

#include  "ae_epoll.c"

#else

#ifdef HAVE_KQUEUE

#include  "ae_kqueue.c"

#else

#include  "ae_select.c"

#endif

#endif

#endif

因为 select 函数是作为 POSIX 标准中的系统调用,在不同版本的操作系统上都会实现,所以将其作为保底方案:

 

Redis 会优先选择时间复杂度为 O(1) 的 I/O 多路复用函数作为底层实现,包括 Solaries 10 中的 evport、Linux 中的 epoll 和 macOS/FreeBSD 中的 kqueue,上述的这些函数都使用了内核内部的结构,并且能够服务几十万的文件描述符。

但是如果当前编译环境没有上述函数,就会选择 select 作为备选方案,由于其在使用时会扫描全部监听的描述符,所以其时间复杂度较差 O(n),并且只能同时服务 1024 个文件描述符,所以一般并不会以 select 作为第一方案使用。

总结

Redis 对于 I/O 多路复用模块的设计非常简洁,通过宏保证了 I/O 多路复用模块在不同平台上都有着优异的性能,将不同的 I/O 多路复用函数封装成相同的 API 提供给上层使用。

整个模块使 Redis 能以单进程运行的同时服务成千上万个文件描述符,避免了由于多进程应用的引入导致代码实现复杂度的提升,减少了出错的可能性。

出自于:https://draveness.me/redis-io-multiplexing

Redis 单线程却能支撑高并发 - 简书 https://www.jianshu.com/p/2d293482f272的更多相关文章

  1. 为什么 redis 单线程却能支撑高并发

    redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 这个是问 redis 的时候,最基本的问题吧,redis 最基本的一个内部原理 ...

  2. 2.redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?

    作者:中华石杉 面试题 redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发? 面试官心理分析 这个是问 redis 的时候,最基本的 ...

  3. redis 和 memcached 有什么区别?redis 的线程模型是什么?为什么 redis 单线程却能支撑高并发?

    redis 和 memcached 有啥区别? redis 支持复杂的数据结构 redis 相比 memcached 来说,拥有更多的数据结构,能支持更丰富的数据操作.如果需要缓存能够支持更复杂的结构 ...

  4. 为什么Redis 单线程却能支撑高并发?

    作者:Draveness 原文:draveness.me/redis-io-multiplexing 推荐阅读 1. Java 性能优化:教你提高代码运行的效率 2. 基于token的多平台身份认证架 ...

  5. 为什么Redis单线程却能支撑高并发?

    作者:Draveness 原文链接:draveness.me/redis-io-multiplexing 最近在看 UNIX 网络编程并研究了一下 Redis 的实现,感觉 Redis 的源代码十分适 ...

  6. redis和memcached有什么区别?redis的线程模型是什么?为什么单线程的redis比多线程的memcached效率要高得多(为什么redis是单线程的但是还可以支撑高并发)?

    1.redis和memcached有什么区别? 这个事儿吧,你可以比较出N多个区别来,但是我还是采取redis作者给出的几个比较吧 1)Redis支持服务器端的数据操作:Redis相比Memcache ...

  7. 关于Redis的几件小事 | 高并发和高可用

    如果你用redis缓存技术的话,肯定要考虑如何用redis来加多台机器,保证redis是高并发的,还有就是如何让Redis保证自己不是挂掉以后就直接死掉了. redis高并发:主从架构,一主多从,一般 ...

  8. Redis高级功能-1、高并发基本概述

    1.可能的问题 要将redis运用到工程项目中,只使用一台redis是万万不能的,原因如下: (1)从结构上,单个redis服务器会发生单点故障,并且一台服务器需要处理所有的请求负载,压力较大. (2 ...

  9. Nodejs:单线程为什么能支持高并发?

      1.Nodejs是一个平台,构建在chrome的V8上(js语言解释器),采用事件驱动.非阻塞模型( c++库:libuv). 参考官方: Node.js is a platform built ...

随机推荐

  1. VMware14虚拟机与宿主机建立通讯

    当我们在VMware14中运行虚拟机搭建实验环境就需要与我们的宿主机或另一台虚拟机连接通讯,下面我们就来看看如何建立通讯,实现虚拟机与宿主机.虚拟机与虚拟机互联互通. 准备环境:一台安装好VMware ...

  2. JavaScript中对数组的排序

    将下列对象数组,通过工资属性,由高到低排序 var BaiduUsers = [], WechatUsers = []; var User = function(id, name, phone, ge ...

  3. JavaScript(ES6之前)数组方法总结

    一.数组的创建 1.使用 Array 构造函数 var arr1 = new Array(); // 创建一个空数组 var arr2 = new Array(20); // 创建一个包含20项的数组 ...

  4. 线性查找与二分查找(python)

    # -*- coding: utf-8 -*- number_list = [0, 1, 2, 3, 4, 5, 6, 7] def linear_search(value, iterable): f ...

  5. windows程序意外关闭子订重启脚本

    window程序意外关闭自动重启脚本实现   @echo off :1 tasklist|find /i "xxxx"||start yyyy ping/n 11 127.1> ...

  6. P2746 P2812 [USACO5.3]校园网Network of Schools[SCC缩点]

    题目描述 一些学校连入一个电脑网络.那些学校已订立了协议:每个学校都会给其它的一些学校分发软件(称作"接受学校").注意即使 B 在 A 学校的分发列表中, A 也不一定在 B 学 ...

  7. python学习之正则表达式,StringIO模块,异常处理,搭建测试环境

    python正则表达式 引入一个强大的匹配功能来匹配字符串 import re 正则表达式的表示类型raw string类型(原生字符串类型) r'sa\\/sad/asd'用r转为raw strin ...

  8. 一、冒泡排序Bubble sort

    https://www.cnblogs.com/kkun/archive/2011/11/23/2260312.html#3824357 #include<iostream> #inclu ...

  9. Linux命令的详解

           cat /etc/passwd文件中的每个用户都有一个对应的记录行,记录着这个用户的一下基本属性.该文件对所有用户可读.               /etc/shadow  文件正如他 ...

  10. Mac 升级 Python2.7 到 Python3.5

    1.去 Python 官网下载一个版本的包 https://www.python.org/downloads/mac-osx/ 2.安装之后,去  /Library/Frameworks/Python ...