第十五章、Python多线程同步锁,死锁和递归锁

1. 引子:

1.创建线程对象
t1 = threading.Thread(target=say,args=('tony',))
2.启动线程
t1.start()
后面又说了两个点就是join和守护线程的概念

以上就是python多线程的基本使用

​ 说明:前面说的两个功能是相互独立的,相互不干涉的,不会用到同享的资源或者数据,如果我们多个线程要用到相同的数据,那么就会存在资源争用和锁的问题,不管在什么语言中,这个都是不能避免的。 那么接下来讲讲同步锁,死锁和递归锁的使用

2.同步锁

​ 锁通常被用来实现对共享资源的同步访问。为每一个共享资源创建一个Lock对象,当你需要访问该资源时,调用acquire方法来获取锁对象(如果其它线程已经获得了该锁,则当前线程需等待其被释放),待资源访问完后,再调用release方法释放锁。

​ 适用同步锁的例子如下:

import threading
import time num = 100 def fun_sub():
global num
# num -= 1
num2 = num
time.sleep(0.001)
num = num2-1 if __name__ == '__main__':
print('开始测试同步锁 at %s' % time.ctime()) thread_list = []
for thread in range(100):
t = threading.Thread(target=fun_sub)
t.start()
thread_list.append(t) for t in thread_list:
t.join()
print('num is %d' % num)
print('结束测试同步锁 at %s' % time.ctime())
-----------------------------------------------------
开始测试同步锁 at Sun Apr 28 09:56:45 2019
num is 91
结束测试同步锁 at Sun Apr 28 09:56:45 2019

这样的例子描述:创建100的线程,然后每个线程去从公共资源num变量去执行减1操作,按照正常情况下面,等到代码执行结束,打印num变量,应该得到的是0,因为100个线程都去执行了一次减1的操作。

这样的问题是:发现结果不是0而是91

让我们整理一下代码思路

1.因为GIL,只有一个线程(假设线程1)拿到了num这个资源,然后把变量赋值给num2,sleep 0.001秒,这时候num=100

2.当第一个线程sleep 0.001秒这个期间,这个线程会做yield操作,就是把cpu切换给别的线程执行(假设线程2拿到个GIL,获得cpu使用权),线程2也和线程1一样也拿到num,返回赋值给num2,然后sleep,这时候,其实num还是=100.

3.线程2 sleep时候,又要yield操作,假设线程3拿到num,执行上面的操作,其实num有可能还是100

4.等到后面cpu重新切换给线程1,线程2,线程3上执行的时候,他们执行减1操作后,其实等到的num其实都是99,而不是顺序递减的。

5.其他剩余的线程操作如上

解决方案:这里就要借助于python的同步锁了,也就是同一时间只能放一个线程来操作num变量,减1之后,后面的线程操作来操作num变量。看看下面我们怎么实现。

import threading
import time num = 100 def fun_sub():
global num
lock.acquire()
print('----加锁----')
print('现在操作共享资源的线程名字是:',t.name)
num2 = num
time.sleep(0.001)
num = num2-1
lock.release()
print('----释放锁----') if __name__ == '__main__':
print('开始测试同步锁 at %s' % time.ctime()) lock = threading.Lock() #创建一把同步锁 thread_list = []
for thread in range(100):
t = threading.Thread(target=fun_sub)
t.start()
thread_list.append(t) for t in thread_list:
t.join()
print('num is %d' % num)
print('结束测试同步锁 at %s' % time.ctime())
------------------------------------------------
.......
----加锁----
现在操作共享资源的线程名字是: Thread-98
----释放锁----
----加锁----
现在操作共享资源的线程名字是: Thread-100
----释放锁----
num is 0
结束测试同步锁 at Sun Apr 28 12:08:27 2019

思路:看到上面我们给中间的减1代码块,加个一把同步锁,这样,我们就可以得到我们想要的结果了,这就是同步锁的作用,一次只有一个线程操作同享资源。

3.死锁

引子:

​ 死锁的这个概念在很多地方都存在,比较在数据中,大概介绍下死锁是怎么产生的

# 线程1拿到了(锁头2)想要往下执行需要(锁头1),
# 线程2拿到了(锁头1)想要往下执行需要(锁头2)
# 互相都拿到了彼此想要往下执行的必需条件,互相都不放手里的锁头.
# 产生了死锁问题

产生原因:python中在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁,因为系统判断这部分资源都正在使用,所有这两个线程在无外力作用下将一直等待下去。

from threading import Thread,Lock
mutex1 = Lock()
mutex2 = Lock()
import time
class MyThreada(Thread):
def run(self):
self.task1()
self.task2()
def task1(self):
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ') def task2(self):
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
time.sleep(1)
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ') for i in range(3):
t = MyThreada()
t.start()

那么,为了解决这个死锁问题,就引入了递归锁方案

4.递归锁RLock

原理:

​ 为了支持在同一线程中多次请求同一资源,python提供了"递归锁":threading.RLock。RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次acquire。直到一个线程所有的acquire都被release,其他的线程才能获得资源

不多说,放代码

from threading import Thread,Lock,RLock
# mutex1 = Lock()
# mutex2 = Lock()
mutex1 = RLock()
mutex2 = mutex1 import time
class MyThreada(Thread):
def run(self):
self.task1()
self.task2()
def task1(self):
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ') def task2(self):
mutex2.acquire()
print(f'{self.name} 抢到了 锁2 ')
time.sleep(1)
mutex1.acquire()
print(f'{self.name} 抢到了 锁1 ')
mutex1.release()
print(f'{self.name} 释放了 锁1 ')
mutex2.release()
print(f'{self.name} 释放了 锁2 ') for i in range(3):
t = MyThreada()
t.start()

总结:

​ 上面我们用一把递归锁,就解决了多个同步锁导致的死锁问题。大家可以把RLock理解为大锁中还有小锁,只有等到内部所有的小锁,都没有了,其他的线程才能进入这个公共资源。

5. 大总结

​ 还有一点,并不是所有的多线程都存在数据不同步、死锁的问题,但在访问共享资源的时候,锁是一定要存在了, 所以我们在代码里面加锁的时候,要注意在什么地方加,对性能的影响最小,这个就靠对逻辑的理解了。

第十五章、Python多线程同步锁,死锁和递归锁的更多相关文章

  1. 8.14 day32 TCP服务端并发 GIL解释器锁 python多线程是否有用 死锁与递归锁 信号量event事件线程q

    TCP服务端支持并发 解决方式:开多线程 服务端 基础版 import socket """ 服务端 1.要有固定的IP和PORT 2.24小时不间断提供服务 3.能够支 ...

  2. Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures

    参考博客: https://www.cnblogs.com/xiao987334176/p/9046028.html 线程简述 什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线 ...

  3. python 全栈开发,Day42(Thread类的其他方法,同步锁,死锁与递归锁,信号量,事件,条件,定时器,队列,Python标准模块--concurrent.futures)

    昨日内容回顾 线程什么是线程?线程是cpu调度的最小单位进程是资源分配的最小单位 进程和线程是什么关系? 线程是在进程中的 一个执行单位 多进程 本质上开启的这个进程里就有一个线程 多线程 单纯的在当 ...

  4. 同步锁 死锁与递归锁 信号量 线程queue event事件

    二个需要注意的点: 1 线程抢的是GIL锁,GIL锁相当于执行权限,拿到执行权限后才能拿到互斥锁Lock,其他线程也可以抢到GIL,但如果发现Lock任然没有被释放则阻塞,即便是拿到执行权限GIL也要 ...

  5. GIL全局解释器锁-死锁与递归锁-信号量-event事件

    一.全局解释器锁GIL: 官方的解释:掌握概念为主 """ In CPython, the global interpreter lock, or GIL, is a m ...

  6. 10 并发编程-(线程)-GIL全局解释器锁&死锁与递归锁

    一.GIL全局解释器锁 1.引子 在Cpython解释器中,同一个进程下开启的多线程,同一时刻只能有一个线程执行,无法利用多核优势 首先需要明确的一点是GIL并不是Python的特性,它是在实现Pyt ...

  7. python并发编程之线程(创建线程,锁(死锁现象,递归锁),GIL锁)

    什么是线程 进程:资源分配单位 线程:cpu执行单位(实体),每一个py文件中就是一个进程,一个进程中至少有一个线程 线程的两种创建方式: 一 from threading import Thread ...

  8. day 33 什么是线程? 两种创建方式. 守护线程. 锁. 死锁现象. 递归锁. GIL锁

    一.线程     1.进程:资源的分配单位    线程:cpu执行单位(实体) 2.线程的创建和销毁开销特别小 3.线程之间资源共享,共享的是同一个进程中的资源 4.线程之间不是隔离的 5.线程可不需 ...

  9. 第十五章、Python多线程之信号量和GIL

    目录 第十五章.Python多线程之信号量和GIL 1. 信号量(Semaphore) 2. GIL 说明: 第十五章.Python多线程之信号量和GIL 1. 信号量(Semaphore) 信号量用 ...

随机推荐

  1. IIS 7 实现http跳转https 重定向方法

    官网的域名申请了一个SSL加密,导致原来的http无法访问了,网上找了一下解决方案,https://www.cnblogs.com/wer-ltm/p/10190535.html  按照这个方法进行了 ...

  2. Python中的单继承与多继承实例分析

    Python中的单继承与多继承实例分析 本文实例讲述了Python中的单继承与多继承.分享给大家供大家参考,具体如下: 单继承 一.介绍 Python 同样支持类的继承,如果一种语言不支持继承,类就没 ...

  3. ScrollView-基本设置

    一: 掌握两点: 1. ScrollView必须有一个确定的高度才能正常工作,因为它实际上所做的就是将一系列不确定高度的子组件装进一个确定高度的容器(通过滚动操作).要给一个ScrollView确定一 ...

  4. flask(1.0)

    目录 一. 关于KeyError和IndexError 二. Python三大主流框架对比 三. flask基础 1.安装flask 2.用flask写出的第一个页面 3.Flask的Response ...

  5. Maven Web 工程

    本教程将教您如何在Eclipse中创建 Archetype为 maven-archetype-webapp的Maven项目,也就是web工程. 创建Maven工程 第一步,启动Eclipse,依次打开 ...

  6. Kafka如何保证百万级写入速度以及保证不丢失不重复消费

    一.如何保证百万级写入速度: 目录 1.页缓存技术 + 磁盘顺序写 2.零拷贝技术 3.最后的总结 “这篇文章来聊一下Kafka的一些架构设计原理,这也是互联网公司面试时非常高频的技术考点. Kafk ...

  7. VMware HorizonView虚拟化桌面TLS问题处理

    问题描述 公司虚拟化桌面环境内,进出口事业部同事在使用"中国贸易单一窗口"登录系统时,其系统本地控件无法启动WSS服务,端口显示使用61231,并反复提示安装控件. 排查过程 首先 ...

  8. redis 持久化之 RDB & AOF

    Redis 持久化实现方式 快照对数据某一时间点的完整备份.例如Linux 快照备份.Redis RDB.MySQL Dump. 日志将数据的所有操作都记录到日志中,需要恢复时,将日志重新执行一次.M ...

  9. Spring4学习回顾之路01—HelloWorld

    以前公司一直使用的是spring3.0,最近一段时间开始用了4.0,官网上都已经有了5.0,但是很多知识点已经忘了差不多了,趁现在项目不忙写写随笔,一来回顾自己的知识点,二来如果能帮助比我还小白的小白 ...

  10. GitHub访问及git工具克隆慢问题解决

    一.查询合适的DNS服务器 1.站长工具DNS查询服务器 github.com github.global.ssl.fastly.net 2.选择TTL值最小的记录,记录下对应服务器IP地址 例如 g ...