caffe笔记
1. 训练 cifar10 示例
①
cd caffe.1.0.0
./data/cifar10/get_cifar10.sh #获取图片
② ./examples/cifar10/create_cifar10.sh #图片转换为cifar10_train_lmdb 并且求其均值保存为mean.binaryproto
③ cifar10_quick_solver.prototxt 编写的模型参数
cifar10_quick_solver的CNN模型由卷基层(convolution)、池化层(pooling)、非线性ReLU层(rectified linear unit (ReLU) nonlinearities)和在顶端的局部对比归一化线性分类器组成(local contrast normalization with a linear classifier on top of it all)。
④ time sh ./examples/cifar10/train_quick.sh # 训练 加time 能显示训练的时长。
⑤ 训练生成的文件
- cifar10_quick_iter_5000.caffemodel.h5:迭代5000次训练出来的模型,后面就用这个模型来做分类
- cifar10_quick_iter_5000.solverstate.h5:也是迭代5000次训练出来的模型,应该是用来中断后继续训练用的文件。
对于如何使用自己训练好的cifar10_quick_iter_5000.caffemodel.h5模型进行图片预测,会在随后的笔记中进行讲解。
⑥ prototxt 参数
cifar10_quick_solver的CNN模型由卷基层(convolution)、池化层(pooling)、非线性ReLU层
2. 使用
https://blog.csdn.net/fengbingchun/article/details/72999346
#include <iostream>
#include <opencv2/opencv.hpp>
#include <caffe/caffe.hpp>
#include <string>
using namespace caffe;
using namespace std;
int main(int argc,char* argv[]) {
typedef float type;
type ary[*]; //在28*28的图片颜色为RGB(255,255,255)背景上写RGB(0,0,0)数字.
cv::Mat gray(,,CV_8UC1,cv::Scalar());
cv::putText(gray,argv[],cv::Point(,),,1.4,cv::Scalar(),); //将图像的数值从uchar[0,255]转换成float[0.0f,1.0f],的数, 且颜色取相反的 .
for(int i=;i<*;i++){
// f_val =(255-uchar_val)/255.0f
ary[i] = static_cast<type>(gray.data[i]^0xFF)*0.00390625;
} cv::imshow("x",gray);
cv::waitKey(); //set cpu running software
Caffe::set_mode(Caffe::CPU); //load net file , caffe::TEST 用于测试时使用
Net<type> lenet(argv[],caffe::TEST); //load net train file caffemodel
lenet.CopyTrainedLayersFrom(argv[]); Blob<type> *input_ptr = lenet.input_blobs()[];
input_ptr->Reshape(,,,); Blob<type> *output_ptr= lenet.output_blobs()[];
output_ptr->Reshape(,,,); //copy data from <ary> to <input_ptr>
input_ptr->set_cpu_data(ary); //begin once predict
lenet.Forward(); const type* begin = output_ptr->cpu_data(); // get the maximum index
int index=;
for(int i=;i<;i++){
if(begin[index]<begin[i])
index=i;
} // 打印这次预测[0,9]的每一个置信度
for(int i=;i<;i++)
cout<<i<<"\t"<<begin[i]<<endl; // 展示最后的预测结果
cout<<"res:\t"<<index<<"\t"<<begin[index]<<endl;
return ;
}
② C++ 调用cirfar10 的model
//classification.bin deploy.prototxt bvlc_reference_caffenet.caffemodel magenet_mean.binaryproto synset_words.txt cat.jpg
#include <caffe/caffe.hpp>
#define USE_OPENCV
#ifdef USE_OPENCV
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#endif // USE_OPENCV
#include <algorithm>
#include <iosfwd>
#include <memory>
#include <string>
#include <utility>
#include <vector> #ifdef USE_OPENCV
using namespace caffe; // NOLINT(build/namespaces)
using std::string; /* Pair (label, confidence) representing a prediction. */
typedef std::pair<string, float> Prediction; class Classifier {
public:
Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file); std::vector<Prediction> Classify(const cv::Mat& img, int N = ); private:
void SetMean(const string& mean_file); std::vector<float> Predict(const cv::Mat& img); void WrapInputLayer(std::vector<cv::Mat>* input_channels); void Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels); private:
shared_ptr<Net<float> > net_;
cv::Size input_geometry_;
int num_channels_;
cv::Mat mean_;
std::vector<string> labels_;
}; Classifier::Classifier(const string& model_file,
const string& trained_file,
const string& mean_file,
const string& label_file) {
#ifdef CPU_ONLY
Caffe::set_mode(Caffe::CPU);
#else
Caffe::set_mode(Caffe::GPU);
#endif /* Load the network. */
net_.reset(new Net<float>(model_file, TEST));
net_->CopyTrainedLayersFrom(trained_file); CHECK_EQ(net_->num_inputs(), ) << "Network should have exactly one input.";
CHECK_EQ(net_->num_outputs(), ) << "Network should have exactly one output."; Blob<float>* input_layer = net_->input_blobs()[];
num_channels_ = input_layer->channels();
CHECK(num_channels_ == || num_channels_ == )
<< "Input layer should have 1 or 3 channels.";
input_geometry_ = cv::Size(input_layer->width(), input_layer->height()); /* Load the binaryproto mean file. */
SetMean(mean_file); /* Load labels. */
std::ifstream labels(label_file.c_str());
CHECK(labels) << "Unable to open labels file " << label_file;
string line;
while (std::getline(labels, line))
labels_.push_back(string(line)); Blob<float>* output_layer = net_->output_blobs()[];
CHECK_EQ(labels_.size(), output_layer->channels())
<< "Number of labels is different from the output layer dimension.";
} static bool PairCompare(const std::pair<float, int>& lhs,
const std::pair<float, int>& rhs) {
return lhs.first > rhs.first;
} /* Return the indices of the top N values of vector v. */
static std::vector<int> Argmax(const std::vector<float>& v, int N) {
std::vector<std::pair<float, int> > pairs;
for (size_t i = ; i < v.size(); ++i)
pairs.push_back(std::make_pair(v[i], i));
std::partial_sort(pairs.begin(), pairs.begin() + N, pairs.end(), PairCompare); std::vector<int> result;
for (int i = ; i < N; ++i)
result.push_back(pairs[i].second);
return result;
} /* Return the top N predictions. */
std::vector<Prediction> Classifier::Classify(const cv::Mat& img, int N) {
std::vector<float> output = Predict(img); N = std::min<int>(labels_.size(), N);
std::vector<int> maxN = Argmax(output, N);
std::vector<Prediction> predictions;
for (int i = ; i < N; ++i) {
int idx = maxN[i];
predictions.push_back(std::make_pair(labels_[idx], output[idx]));
} return predictions;
} /* Load the mean file in binaryproto format. */
void Classifier::SetMean(const string& mean_file) {
BlobProto blob_proto;
ReadProtoFromBinaryFileOrDie(mean_file.c_str(), &blob_proto); /* Convert from BlobProto to Blob<float> */
Blob<float> mean_blob;
mean_blob.FromProto(blob_proto);
CHECK_EQ(mean_blob.channels(), num_channels_)
<< "Number of channels of mean file doesn't match input layer."; /* The format of the mean file is planar 32-bit float BGR or grayscale. */
std::vector<cv::Mat> channels;
float* data = mean_blob.mutable_cpu_data();
for (int i = ; i < num_channels_; ++i) {
/* Extract an individual channel. */
cv::Mat channel(mean_blob.height(), mean_blob.width(), CV_32FC1, data);
channels.push_back(channel);
data += mean_blob.height() * mean_blob.width();
} /* Merge the separate channels into a single image. */
cv::Mat mean;
cv::merge(channels, mean); /* Compute the global mean pixel value and create a mean image
* filled with this value. */
cv::Scalar channel_mean = cv::mean(mean);
mean_ = cv::Mat(input_geometry_, mean.type(), channel_mean);
} std::vector<float> Classifier::Predict(const cv::Mat& img) {
Blob<float>* input_layer = net_->input_blobs()[];
input_layer->Reshape(, num_channels_,
input_geometry_.height, input_geometry_.width);
/* Forward dimension change to all layers. */
net_->Reshape(); std::vector<cv::Mat> input_channels;
WrapInputLayer(&input_channels); Preprocess(img, &input_channels); net_->Forward(); /* Copy the output layer to a std::vector */
Blob<float>* output_layer = net_->output_blobs()[];
const float* begin = output_layer->cpu_data();
const float* end = begin + output_layer->channels();
return std::vector<float>(begin, end);
} /* Wrap the input layer of the network in separate cv::Mat objects
* (one per channel). This way we save one memcpy operation and we
* don't need to rely on cudaMemcpy2D. The last preprocessing
* operation will write the separate channels directly to the input
* layer. */
void Classifier::WrapInputLayer(std::vector<cv::Mat>* input_channels) {
Blob<float>* input_layer = net_->input_blobs()[]; int width = input_layer->width();
int height = input_layer->height();
float* input_data = input_layer->mutable_cpu_data();
for (int i = ; i < input_layer->channels(); ++i) {
cv::Mat channel(height, width, CV_32FC1, input_data);
input_channels->push_back(channel);
input_data += width * height;
}
} void Classifier::Preprocess(const cv::Mat& img,
std::vector<cv::Mat>* input_channels) {
/* Convert the input image to the input image format of the network. */
cv::Mat sample;
if (img.channels() == && num_channels_ == )
cv::cvtColor(img, sample, cv::COLOR_BGR2GRAY);
else if (img.channels() == && num_channels_ == )
cv::cvtColor(img, sample, cv::COLOR_BGRA2GRAY);
else if (img.channels() == && num_channels_ == )
cv::cvtColor(img, sample, cv::COLOR_BGRA2BGR);
else if (img.channels() == && num_channels_ == )
cv::cvtColor(img, sample, cv::COLOR_GRAY2BGR);
else
sample = img; cv::Mat sample_resized;
if (sample.size() != input_geometry_)
cv::resize(sample, sample_resized, input_geometry_);
else
sample_resized = sample; cv::Mat sample_float;
if (num_channels_ == )
sample_resized.convertTo(sample_float, CV_32FC3);
else
sample_resized.convertTo(sample_float, CV_32FC1); cv::Mat sample_normalized;
cv::subtract(sample_float, mean_, sample_normalized); /* This operation will write the separate BGR planes directly to the
* input layer of the network because it is wrapped by the cv::Mat
* objects in input_channels. */
cv::split(sample_normalized, *input_channels); CHECK(reinterpret_cast<float*>(input_channels->at().data)
== net_->input_blobs()[]->cpu_data())
<< "Input channels are not wrapping the input layer of the network.";
} //classification.bin deploy.prototxt bvlc_reference_caffenet.caffemodel magenet_mean.binaryproto synset_words.txt cat.jpg int main(int argc, char** argv) {
if (argc != ) {
std::cerr << "Usage: " << argv[]
<< " deploy.prototxt network.caffemodel"
<< " mean.binaryproto labels.txt img.jpg" << std::endl;
return ;
} ::google::InitGoogleLogging(argv[]); string model_file = argv[];
string trained_file = argv[];
string mean_file = argv[];
string label_file = argv[];
Classifier classifier(model_file, trained_file, mean_file, label_file); //*.caffemodel.h5 string file = argv[]; std::cout << "---------- Prediction for "
<< file << " ----------" << std::endl; cv::Mat img = cv::imread(file, -);
CHECK(!img.empty()) << "Unable to decode image " << file;
std::vector<Prediction> predictions = classifier.Classify(img); /* Print the top N predictions. */
for (size_t i = ; i < predictions.size(); ++i) {
Prediction p = predictions[i];
std::cout << std::fixed << std::setprecision() << p.second << " - \""
<< p.first << "\"" << std::endl;
}
}
#else
int main(int argc, char** argv) {
LOG(FATAL) << "This example requires OpenCV; compile with USE_OPENCV.";
}
#endif // USE_OPENCV
caffe笔记的更多相关文章
- LARC Caffe笔记(二) 训练自己的img
继看完 贺完结!CS231n官方笔记 上一次已经成功跑起caffe自带的例程,mnist和cifar10 但是终归用的是里面写好的脚本,于是打算训练自己的img 〇.目标 准备好food图片3类(出于 ...
- caffe 笔记
caffe模块: blob:caffe中数据的封装,用于layer上流动 layer:输入层.输出层.神经网络层的抽象 net:神经网络结构,将layer层叠关联起来 solver:定义神经网络训练和 ...
- 21天实战caffe笔记_第三天
1 深度学习工具汇总 (1) caffe : 由BVLC开发的基于C++/CUDA/Python实现的卷积神经网络,提供了面向命令行.Matlab和Python的绑定接口.特性如下: A 实现了前馈 ...
- 21天实战caffe笔记_第二天
1 传统机器学习 传统机器学习:通过人工设计特征提取器,将原始数据转化为合适的中间表示形式或者特征向量,利用学习系统(通常为分类器)可以对输入模式进行检测或者分类.流程如下: 传统机器学习的局限在于需 ...
- LARC Caffe笔记(一) Setup
采用杂记的形式 从查找到知乎页面开始:https://www.zhihu.com/question/27982282 到mnist example页面:http://caffe.berkeleyvis ...
- Caffe 笔记 (一)caffe的层与数据结构
Caffe是纯粹的C++/CUDA架构,支持命令行.Python和MATLAB接口:可以在CPU和GPU直接无缝切换: Caffe::set_mode(Caffe::GPU); Caffe的优势 1. ...
- 21天实战caffe笔记_第一天
1 深度学习术语 深度学习常用名词:有监督学习.无监督学习.训练数据集.测试数据集.过拟合.泛化.惩罚值(损失loss); 机器自动学习所需三份数据:训练集(机器学习的样例),验证集(机器学习阶段,用 ...
- Caffe学习笔记2--Ubuntu 14.04 64bit 安装Caffe(GPU版本)
0.检查配置 1. VMWare上运行的Ubuntu,并不能支持真实的GPU(除了特定版本的VMWare和特定的GPU,要求条件严格,所以我在VMWare上搭建好了Caffe环境后,又重新在Windo ...
- [笔记] Ubuntu 18.04源码安装caffe流程
虽然Ubuntu 18.04可以通过apt安装caffe,但是为了使用最新的代码,还是值得从源码安装一遍的. 安装环境 OS: Ubuntu 18.04 64 bit 显卡: NVidia GTX 1 ...
随机推荐
- vue-cli项目模板的一些思考
之前有个想法,就是要利用vue写一套ui.然后当时也没有搞清楚到底怎么写. 几经周转吧,通过付费的方式在gitbook上面找到了答案. 找到答案之后再看我们正在开发的项目,看伙伴写的代码,突然发现完全 ...
- 亿美软通 短信api
亿美软通 短信api 国际短信http标准协议文档和demo的地址: http://www.b2m.cn/static/doc/ims/ims_sendSingle.html import d ...
- CentOS7下安装php-redis扩展
yum -y install php70w-pecl-redis
- Markdown使用TOC自动生成导航栏
经常使用markdown 的玩家一定很想要一个自动生成的导航栏吧,自己写的基本思路就是 轮询监听滚动条的位置,通过抛锚和跳锚实现,这里介绍一下今天的主角,markdown-toc插件: https:/ ...
- VLC-DSS搭建直播系统中链路断开影响测试
VLC-DSS搭建直播系统中链路断开影响测试 系统环境搭建如图所示.计算机77上运行VLC从摄像机51上取流,推送给一级DSS服务器30:二级DSS服务器78从一级DSS服务器30上取流转发.(其配置 ...
- [C++]多源最短路径(带权有向图):【Floyd算法(动态规划法)】 VS n*Dijkstra算法(贪心算法)
1 Floyd算法 1.1 解决问题/提出背景 多源最短路径(带权有向图中,求每一对顶点之间的最短路径) 方案一:弗洛伊德(Floyd算法)算法 算法思想:动态规划法 时间复杂度:O(n^3) 形式上 ...
- jQuery.data() 即($.data())的实现方式
jQuery.data() 的作用是为普通对象或 DOM Element 附加(及获取)数据. 下面将分三个部分分析其实现方式: 1. 用name和value为对象附加数据:即传入三个 ...
- DataFrame执行groupby聚合操作后,如何继续保持DataFrame对象而不变成Series对象
刚接触pandas不久,在处理特征时,碰到一个恶心的问题:用groupby聚合后,之前的dataframe对象变成了series对象,聚合的字段变成了索引index,导致获取这些字段时很麻烦,后面发现 ...
- pytest.mark.parametrize()参数化应用二,读取json文件
class TestEnorll(): def get_data(self): """ 读取json文件 :return: """ data ...
- jstl标签设置通用web项目根路径-备查
在做项目时(如SSH或SpringMVC),通常需要在很多页面(jsp中的form提交)或者js代码(一般Ajax提交)中用到当前web应用的根路径(拼成访问资源如action/controller. ...