CF809E 【Surprise me!】
我们要求的柿子是张这样子的:
\[\frac{1}{n * (n - 1)} * \sum_{i = 1}^n\sum_{j = 1}^{n}\phi(a_i*a_j)*dis(i, j)\]
其中\(a_i\)为一个排列,\(dis(i, j)\)表示在树上的距离
这种题的套路一般是先拆柿子,但是这道题的式子……
我们要从一个性质下手:
\[\phi(a * b) = \frac{\phi(a) * \phi(b) * gcd(a, b)}{\phi(gcd(a, b))}\]
代入原式得:
\[\frac{1}{n * (n - 1)} * \sum_{i = 1}^n\sum_{j = 1}^{n}\frac{\phi(a_i) * \phi(a_j) * gcd(a_i, a_j)}{\phi(gcd(a_i, a_j))}*dis(i, j)\]
先忽略前面的数,只看后面的\(\sum\),枚举\(gcd(a_i, a_j)\),得到
\[\sum_{k = 1}^n\frac{k}{\phi(k)}\sum_{i = 1}^n\sum_{j = 1}^{n}\phi(a_i) * \phi(a_j)*dis(i, j)*[gcd(a_i, a_j) == k]\]
然后反演一波,得到:
\[\sum_{k = 1}^n\frac{k}{\phi(k)}\sum_{i = 1}^n\sum_{j = 1}^{n}\phi(a_i) * \phi(a_j)*dis(i, j)*\sum_{(x * k|a[i]) \& (x * k | a[j])}\mu(x)\]
枚举\(k * x\)
\[\sum_{T = 1}^n\sum_{k|T}\frac{k}{\phi(k)}\sum_{i = 1}^n\sum_{j = 1}^{n}\phi(a_i) * \phi(a_j)*dis(i, j)*\sum_{(T|a[i]) \& (T | a[j])}\mu(\frac{T}{k})\]
交换顺序得:
\[\sum_{T = 1}^n\sum_{k|T}\frac{k}{\phi(k)} * \mu(\frac{T}{k})\sum_{a[i]\ |\ T}\sum_{a[j]\ |\ T}\phi(a_i) * \phi(a_j)*dis(i, j)\]
我们考虑枚举T,对于后面的柿子,我们可以单独拎出来,对所有\(a[i] | T\)用树形DP求出后面柿子的答案,前面的柿子可以提前与处理出来
由于虚树的总点数是\((nlogn)\)个(并不会证明),所以复杂度正确,但由于虚树上的DP和普通DP有一定差异,所以我们还需要对后面的柿子继续化简
\[\sum_{a[i]\ |\ T}\sum_{a[j]\ |\ T}\phi(a_i) * \phi(a_j)*dis(i, j)\]
拆开\(dis(i, j)\)得:
\[\sum_{a[i]\ |\ T}\sum_{a[j]\ |\ T}\phi(a_i) * \phi(a_j)*(dep[i] + dep[j] - 2 * dep[lca(i, j)])\]
令\(val[i] = \phi(a_i)\),把所有\(a[i] | T\)拎出来,假设有x个
\[\sum_{i= 1}^{x}\sum_{j = 1}^xval[i] * val[j]*(dep[i] + dep[j] - 2 * dep[lca(i, j)])\]
\[\sum_{i= 1}^{x}\sum_{j = 1}^xval[i] * val[j]*dep[i] + \sum_{i= 1}^{x}\sum_{j = 1}^xval[i] * val[j] * dep[j] -2 * \sum_{i= 1}^{x}\sum_{j = 1}^xval[i] * val[j] * dep[lca(i, j)])\]
\[2 * \sum_{i= 1}^{x}val[i] *dep[i] \sum_{j = 1}^xval[j] -2 * \sum_{i= 1}^{x}\sum_{j = 1}^xval[i] * val[j] * dep[lca(i, j)])\]
前面的柿子可以与处理出来,后面的柿子只需要我们在虚树上枚举lca,求出\(\sum_{i= 1}^{x}\sum_{j = 1}^xval[i] * val[j]*[lca(i, j) == lca]\)
这个值其实不难求,记录\(f(x)= \sum_{i = 1}^xval[i]\)即可
CF809E 【Surprise me!】的更多相关文章
- 【AR实验室】mulberryAR : ORBSLAM2+VVSION
本文转载请注明出处 —— polobymulberry-博客园 0x00 - 前言 mulberryAR是我业余时间弄的一个AR引擎,目前主要支持单目视觉SLAM+3D渲染,并且支持iOS端,但是该引 ...
- 【.net 深呼吸】细说CodeDom(1):结构大观
CodeDom 是啥东东?Html Dom听过吧,XML Dom听过吧.DOM一般可翻译为 文档对象模型,那 Code + DOM呢,自然是指代码文档模型了.如果你从来没接触过 CodeDom,你大概 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 【前端性能】高性能滚动 scroll 及页面渲染优化
最近在研究页面渲染及web动画的性能问题,以及拜读<CSS SECRET>(CSS揭秘)这本大作. 本文主要想谈谈页面优化之滚动优化. 主要内容包括了为何需要优化滚动事件,滚动与页面渲染的 ...
- 【深入浅出jQuery】源码浅析--整体架构
最近一直在研读 jQuery 源码,初看源码一头雾水毫无头绪,真正静下心来细看写的真是精妙,让你感叹代码之美. 其结构明晰,高内聚.低耦合,兼具优秀的性能与便利的扩展性,在浏览器的兼容性(功能缺陷.渐 ...
- 【.net 深呼吸】程序集的热更新
当一个程序集被加载使用的时候,出于数据的完整性和安全性考虑,程序集文件(在99.9998%的情况下是.dll文件)会被锁定,如果此时你想更新程序集(实际上是替换dll文件),是不可以操作的,这时你得把 ...
- 【.net 深呼吸】跨应用程序域执行程序集
应用程序域,你在网上可以查到它的定义,凡是概念性的东西,大伙儿只需要会搜索就行,内容看了就罢,不用去记忆,更不用去背,“名词解释”是大学考试里面最无聊最没水平的题型. 简单地说,应用程序域让你可以在一 ...
- 【Web动画】SVG 实现复杂线条动画
在上一篇文章中,我们初步实现了一些利用基本图形就能完成的线条动画: [Web动画]SVG 线条动画入门 当然,事物都是朝着熵增焓减的方向发展的,复杂线条也肯定比有序线条要多. 很多时候,我们无法人工去 ...
- 【Web动画】SVG 线条动画入门
通常我们说的 Web 动画,包含了三大类. CSS3 动画 javascript 动画(canvas) html 动画(SVG) 个人认为 3 种动画各有优劣,实际应用中根据掌握情况作出取舍,本文讨论 ...
随机推荐
- Gitlab服务不能启动postgresql
源博文:http://www.zxmseed.com/blog/911081 1.查看启动的服务 -sh-4.1$ gitlab-ctl status warning: gitlab-workhors ...
- java.lang.AbstractMethodError: null
在使用springcloud的时候运行报这个错,原因是版本冲突导致的,在idea中创建springcloud项目的时候,这里默认是${spring-cloud.version},但是如果你使用的是高版 ...
- 怎样安装ipython
ipython 是一个python的交互式shell, 比默认的python shell更好用, 支持自动补全 / 上下翻等功能. 下面是按照方法: # 通用安装方法 pip install ipy ...
- C# mailKit 发邮件 简单代码
public static async Task<bool> SendMailAsync22(string Name, string receive, string sender, str ...
- 【转载】 Asp.Net MVC网站提交富文本HTML标签内容抛出异常
今天开发一个ASP.NET MVC网站时,有个页面使用到了FCKEditor富文本编辑器,通过Post方式提交内容时候抛出异常,仔细分析后得出应该是服务器阻止了带有HTML标签内容的提交操作,ASP. ...
- 在vue项目中使用live2d
成品如图: 那么几步简单说明怎么用吧: 第一,先去github上下载相应的静态资源: https://github.com/xiazeyu/live2d-widget-models 第二,将packg ...
- phpcms企业站的一些知识
头header.html 尾footer.html 主页用index.html 列表页用list.html 单网页用page.html 内容页用show.html {template "co ...
- U盘因格式化 NTFS 中断造成无法识别,生产平台同样无法识别的修复处理方案
特征: 电脑设备管理器(win10):识别到大容量存储设备 电脑磁盘管理:识别可移动磁盘无媒体 ChipGenius(v4_19_0319):能识别到制造商,但识别不到芯片具体型号 U盘相关生产平台: ...
- Pandas-数据处理-基础部分
有趣的事,Python永远不会缺席! 如需转发,请注明出处:小婷儿的python https://www.cnblogs.com/xxtalhr/p/11014882.html jupyter 代码 ...
- IOS开发之——绘图(CGContext)
0 CGContextRef context = UIGraphicsGetCurrentContext(); 设置上下文 1 CGContextMoveToPoint 开始画线 2 CGContex ...