Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠
Time Limit: 20 Sec Memory Limit: 650 MB
Submit: 1558 Solved: 890
[Submit][Status][Discuss]
Description
![]()
![]()
Input
第一行包含两个整数n, m,分别表示上下两个管道中球的数目。 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型。其中A表示浅色球,B表示深色球。 第三行为一个AB字符串,长度为m,表示下管道中的情形。
Output
仅包含一行,即为 Sigma(Ai^2) i从1到k 除以1024523的余数。
Sample Input
2 1
AB
B
Sample Output
5
HINT
样例即为文中(图3)。共有两种不同的输出序列形式,序列BAB有1种产生方式,而序列BBA有2种产生方式,因此答案为5。
【大致数据规模】
约30%的数据满足 n, m ≤ 12;
/*
一道DP.
比较妙.
题意相同类型的序列有x个,对答案贡献是x^2。
等价于两个人各自进行操作,得到相同类型序列的方案数.
这个东西是比较好证的。
我们设一个合法序列状态是A,并且现在有x,y两种取法均能得到A
根据乘法原理,那么问题就转化为求A(x,y)二元组的个数.
想象一下现在有两个人正在取数,要求两个人取数相同的方案个数.
令f[i][j][k]表示
people 1 在上面取了i个,下面取了j个
people 2 在上面取了k个,下面取了i+j-k个
people1和people2都取了i+j个数的相同方案的方案个数。
然后枚举上一次取的位置转移即可。。
*/
#include<iostream>
#include<cstdio>
#define mod 1024523
#define MAXN 501
using namespace std;
char a[MAXN],b[MAXN];
int n,m,f[MAXN][MAXN][MAXN];
int main()
{
scanf("%d %d",&n,&m);
scanf("%s",a+1);
scanf("%s",b+1);
for(int i=1;i<=n/2;i++) swap(a[i],a[n-i+1]);
for(int i=1;i<=m/2;i++) swap(b[i],b[m-i+1]);
f[0][0][0]=1;
for(int i=0;i<=n;i++)
for(int j=0;j<=m;j++)
for(int k=0;k<=n;k++)
{
int l=i+j-k;int * p=&f[i][j][k];
if(l<0||l>m) continue;
if(i&&k&&a[i]==a[k]) *p=(*p+f[i-1][j][k-1])%mod;
if(i&&l&&a[i]==b[l]) *p=(*p+f[i-1][j][k])%mod;
if(j&&k&&b[j]==a[k]) *p=(*p+f[i][j-1][k-1])%mod;
if(j&&l&&b[j]==b[l]) *p=(*p+f[i][j-1][k])%mod;
}
printf("%d",f[n][m][n]);
return 0;
}
Bzoj 1566: [NOI2009]管道取珠(DP)的更多相关文章
- BZOJ.1566.[NOI2009]管道取珠(DP 思路)
BZOJ 洛谷 考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数.\(\sum a_i^2\)就是两人得到的输出序列相同的方案数. \(f[i][j][ ...
- bzoj 1566: [NOI2009]管道取珠【dp】
想不出来想不出来 仔细考虑平方的含义,我们可以把它想成两个人同时操作,最后得到相同序列的情况 然后就比较简单了,设f[t][i][j]为放了t个珠子,A的上方管道到了第i颗珠子,B的上方管道到了第j颗 ...
- bzoj 1566: [NOI2009]管道取珠
Description Input 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- 1566: [NOI2009]管道取珠 - BZOJ
Description Input第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行 ...
- 【BZOJ】1566: [NOI2009]管道取珠
题解 假如我们非常熟练的看出来,平方和转有序对统计的套路的话,应该就不难了 我们只需要统计(wayA,wayB)生成的序列一样的有序对个数就行 可以用一个\(n^3\)的dp解决 \(dp[i][j] ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- [NOI2009]管道取珠 DP + 递推
---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
随机推荐
- ASP.Net Core 返回的json数据,自定义日期格式
//代码位置:Startup.cs public void ConfigureServices(IServiceCollection services) { services.AddMvc() .Ad ...
- Luogu5405 CTS2019氪金手游(容斥原理+树形dp)
考虑外向树怎么做.显然设f[i][j]为i子树中出现权值和为j的合法方案的概率,转移做树形背包即可. 如果树上只有一条反向边,显然可以先不考虑该边计算概率,再减去将整棵树看做外向树的概率.于是考虑容斥 ...
- 网页调试js时,如何知道某个事件对应哪段js代码?
有时候我们需要知道某个事件对应的js代码,比如点击一个div元素时,出现下拉框,我想知道这个功能对应的js代码,那就可以按下图操作: 勾选click事件,重新运行,那么就会在每个click事件那里设置 ...
- 使用Spring Cloud OAuth2和JWT保护微服务
采用Spring Security AOuth2 和 JWT 的方式,避免每次请求都需要远程调度 Uaa 服务.采用Spring Security OAuth2 和 JWT 的方式,Uaa 服务只验证 ...
- iOS - The file “XXX.app” couldn’t be opened because you don’t have permission to view it.
当引入第三方的框架的时候 容易产生以下问题: The file “XXX.app” couldn’t be opened because you don’t have permission to vi ...
- jquery事件委托详解
jQuery事件委托处理流程 上一章分析jQuery.event.add的时候已经分析了事件绑定,再把绑定的部分源码抽出来 if ( !(eventHandle = elemData.handle) ...
- Fortify漏洞之Sql Injection(sql注入)
公司最近启用了Fortify扫描项目代码,报出较多的漏洞,安排了本人进行修复,近段时间将对修复的过程和一些修复的漏洞总结整理于此! 本篇先对Fortify做个简单的认识,同时总结一下sql注入的漏洞! ...
- -bash: 无法为立即文档创建临时文件: 设备上没有空间---记一次报错
故障发生原因 测试环境,之前用该机器做过docker-compose,后来有需要用到该机器上的docker环境,需要将旧的docker容器全部删除,由于之前启动是使用docker-compose启动的 ...
- DDD总览
DDD总览 领域驱动设计(DDD)编码实践 目录 写在前面DDD总览实现业务的3种常见方式基于业务的分包领域模型的门面——应用服务业务的载体——聚合根实体 vs 值对象聚合根的家——资源库创生之柱 ...
- Java面试题及答案解析
面向对象编程(OOP) Java是一个支持并发.基于类和面向对象的计算机编程语言.下面列出了面向对象软件开发的优点: 代码开发模块化,更易维护和修改. 代码复用. 增强代码的可靠性和灵活性. 增加代码 ...