深入理解分布式系统的2PC和3PC
协调者
在分布式系统中,每一个机器节点虽然都能明确的知道自己执行的事务是成功还是失败,但是却无法知道其他分布式节点的事务执行情况。因此,当一个事务要跨越多个分布式节点的时候(比如,淘宝下单流程,下单系统和库存系统可能就是分别部署在不同的分布式节点中),为了保证该事务可以满足ACID,就要引入一个协调者(Cooradinator)。其他的节点被称为参与者(Participant)。协调者负责调度参与者的行为,并最终决定这些参与者是否要把事务进行提交。
二阶段提交协议(2PC)
二阶段提交协议主要分为来个阶段:准备阶段和提交阶段。
在日常生活中其实是有很多事都是这种二阶段提交的,比如西方婚礼中就经常出现这种场景:
牧师:”你愿意娶这个女人吗?爱她、忠诚于她,无论她贫困、患病或者残疾,直至死亡。Doyou(你愿意吗)?”
新郎:”Ido(我愿意)!”
牧师:”你愿意嫁给这个男人吗?爱他、忠诚于他,无论他贫困、患病或者残疾,直至死亡。Doyou(你愿意吗)?”
新娘:”Ido(我愿意)!”
牧师:现在请你们面向对方,握住对方的双手,作为妻子和丈夫向对方宣告誓言。
新郎:我——某某某,全心全意娶你做我的妻子,无论是顺境或逆境,富裕或贫穷,健康或疾病,快乐或忧愁,我都将毫无保留地爱你,我将努力去理解你,完完全全信任你。我们将成为一个整体,互为彼此的一部分,我们将一起面对人生的一切,去分享我们的梦想,作为平等的忠实伴侣,度过今后的一生。
新娘:我全心全意嫁给你作为你的妻子,无论是顺境或逆境,富裕或贫穷,健康或疾病,快乐或忧愁,我都将毫无保留的爱你,我将努力去理解你,完完全全信任你,我们将成为一个整体,互为彼此的一部分,我们将一起面对人生的一切,去分享我们的梦想,作为平等的忠实伴侣,度过今后的一生。
上面这个比较经典的桥段就是一个典型的二阶段提交过程。
首先协调者(牧师)会询问两个参与者(二位新人)是否能执行事务提交操作(愿意结婚)。如果两个参与者能够执行事务的提交,先执行事务操作,然后返回YES,如果没有成功执行事务操作,就返回NO。
当协调者接收到所有的参与者的反馈之后,开始进入事务提交阶段。如果所有参与者都返回YES,那就发送COMMIT请求,如果有一个人返回NO,那就返送roolback请求。
值得注意的是,二阶段提交协议的第一阶段准备阶段不仅仅是回答YES or NO,还是要执行事务操作的,只是执行完事务操作,并没有进行commit还是roolback。和上面的结婚例子不太一样。如果非要举例的话可以理解为男女双方交换定情信物的过程。信物一旦交给对方了,这个信物就不能挪作他用了。也就是说,一旦事务执行之后,在没有执行commit或者roolback之前,资源是被锁定的。这会造成阻塞。
2PC存在的问题
下面我们来分析下2PC存在的问题。
这里暂且不谈2PC存在的同步阻塞、单点问题、脑裂等问题(上篇文章中有具体介绍),我们只讨论下数据一致性问题。作为一个分布式的一致性协议,我们主要关注他可能带来的一致性问题的。
2PC在执行过程中可能发生协调者或者参与者突然宕机的情况,在不同时期宕机可能有不同的现象。
情况一:协调者挂了,参与者没挂
这种情况其实比较好解决,只要找一个协调者的替代者。当他成为新的协调者的时候,询问所有参与者的最后那条事务的执行情况,他就可以知道是应该做什么样的操作了。所以,这种情况不会导致数据不一致。
情况二:参与者挂了,协调者没挂
这种情况其实也比较好解决。如果协调者挂了。那么之后的事情有两种情况:
- 第一个是挂了就挂了,没有再恢复。那就挂了呗,反正不会导致数据一致性问题。
- 第二个是挂了之后又恢复了,这时如果他有未执行完的事务操作,直接取消掉,然后询问协调者目前我应该怎么做,协调者就会比对自己的事务执行记录和该参与者的事务执行记录,告诉他应该怎么做来保持数据的一致性。
情况三:参与者挂了,协调者也挂了
这种情况比较复杂,我们分情况讨论。
- 协调者和参与者在第一阶段挂了。
- 由于这时还没有执行commit操作,新选出来的协调者可以询问各个参与者的情况,再决定是进行commit还是roolback。因为还没有commit,所以不会导致数据一致性问题。
- 第二阶段协调者和参与者挂了,挂了的这个参与者在挂之前并没有接收到协调者的指令,或者接收到指令之后还没来的及做commit或者roolback操作。
- 这种情况下,当新的协调者被选出来之后,他同样是询问所有的参与者的情况。只要有机器执行了abort(roolback)操作或者第一阶段返回的信息是No的话,那就直接执行roolback操作。如果没有人执行abort操作,但是有机器执行了commit操作,那么就直接执行commit操作。这样,当挂掉的参与者恢复之后,只要按照协调者的指示进行事务的commit还是roolback操作就可以了。因为挂掉的机器并没有做commit或者roolback操作,而没有挂掉的机器们和新的协调者又执行了同样的操作,那么这种情况不会导致数据不一致现象。
- 第二阶段协调者和参与者挂了,挂了的这个参与者在挂之前已经执行了操作。但是由于他挂了,没有人知道他执行了什么操作。
- 这种情况下,新的协调者被选出来之后,如果他想负起协调者的责任的话他就只能按照之前那种情况来执行commit或者roolback操作。这样新的协调者和所有没挂掉的参与者就保持了数据的一致性,我们假定他们执行了commit。但是,这个时候,那个挂掉的参与者恢复了怎么办,因为他之前已经执行完了之前的事务,如果他执行的是commit那还好,和其他的机器保持一致了,万一他执行的是roolback操作那?这不就导致数据的不一致性了么?虽然这个时候可以再通过手段让他和协调者通信,再想办法把数据搞成一致的,但是,这段时间内他的数据状态已经是不一致的了!
所以,2PC协议中,如果出现协调者和参与者都挂了的情况,有可能导致数据不一致。
为了解决这个问题,衍生除了3PC。我们接下来看看3PC是如何解决这个问题的。
三阶段提交协议(3PC)
3PC最关键要解决的就是协调者和参与者同时挂掉的问题,所以3PC把2PC的准备阶段再次一分为二,这样三阶段提交就有CanCommit、PreCommit、DoCommit三个阶段。在第一阶段,只是询问所有参与者是否可可以执行事务操作,并不在本阶段执行事务操作。当协调者收到所有的参与者都返回YES时,在第二阶段才执行事务操作,然后在第三阶段在执行commit或者rollback。
这里再举一个生活中类似三阶段提交的例子:
班长要组织全班同学聚餐,由于大家毕业多年,所以要逐个打电话敲定时间,时间初定10.1日。然后开始逐个打电话。
班长:小A,我们想定在10.1号聚会,你有时间嘛?有时间你就说YES,没有你就说NO,然后我还会再去问其他人,具体时间地点我会再通知你,这段时间你可先去干你自己的事儿,不用一直等着我。(协调者询问事务是否可以执行,这一步不会锁定资源)
小A:好的,我有时间。(参与者反馈)
班长:小B,我们想定在10.1号聚会……不用一直等我。
班长收集完大家的时间情况了,一看大家都有时间,那么就再次通知大家。(协调者接收到所有YES指令)
班长:小A,我们确定了10.1号聚餐,你要把这一天的时间空出来,这一天你不能再安排其他的事儿了。然后我会逐个通知其他同学,通知完之后我会再来和你确认一下,还有啊,如果我没有特意给你打电话,你就10.1号那天来聚餐就行了。对了,你确定能来是吧?(协调者发送事务执行指令,这一步锁住资源。如果由于网络原因参与者在后面没有收到协调者的命令,他也会执行commit)
小A顺手在自己的日历上把10.1号这一天圈上了,然后跟班长说,我可以去。(参与者执行事务操作,反馈状态)
班长:小B,我们觉得了10.1号聚餐……你就10.1号那天来聚餐就行了。
班长通知完一圈之后。所有同学都跟他说:”我已经把10.1号这天空出来了”。于是,他在10.1号这一天又挨个打了一遍电话告诉他们:嘿,现在你们可以出门拉。。。。(协调者收到所有参与者的ACK响应,通知所有参与者执行事务的commit)
小A,小B:我已经出门拉。(执行commit操作,反馈状态)
3PC为什么比2PC好?
直接分析协调者和参与者都挂的情况。
- 第二阶段协调者和参与者挂了,挂了的这个参与者在挂之前已经执行了操作。但是由于他挂了,没有人知道他执行了什么操作。
- 这种情况下,当新的协调者被选出来之后,他同样是询问所有的参与者的情况来觉得是commit还是roolback。这看上去和二阶段提交一样啊?他是怎么解决一致性问题的呢?
- 看上去和二阶段提交的那种数据不一致的情况的现象是一样的,但仔细分析所有参与者的状态的话就会发现其实并不一样。我们假设挂掉的那台参与者执行的操作是commit。那么其他没挂的操作者的状态应该是什么?他们的状态要么是prepare-commit要么是commit。因为3PC的第三阶段一旦有机器执行了commit,那必然第一阶段大家都是同意commit。所以,这时,新选举出来的协调者一旦发现未挂掉的参与者中有人处于commit状态或者是prepare-commit的话,那就执行commit操作。否则就执行rollback操作。这样挂掉的参与者恢复之后就能和其他机器保持数据一致性了。(为了简单的让大家理解,笔者这里简化了新选举出来的协调者执行操作的具体细节,真实情况比我描述的要复杂)
简单概括一下就是,如果挂掉的那台机器已经执行了commit,那么协调者可以从所有未挂掉的参与者的状态中分析出来,并执行commit。如果挂掉的那个参与者执行了rollback,那么协调者和其他的参与者执行的肯定也是rollback操作。
所以,再多引入一个阶段之后,3PC解决了2PC中存在的那种由于协调者和参与者同时挂掉有可能导致的数据一致性问题。
3PC存在的问题
在doCommit阶段,如果参与者无法及时接收到来自协调者的doCommit或者rebort请求时,会在等待超时之后,会继续进行事务的提交。
所以,由于网络原因,协调者发送的abort响应没有及时被参与者接收到,那么参与者在等待超时之后执行了commit操作。这样就和其他接到abort命令并执行回滚的参与者之间存在数据不一致的情况。
深入理解分布式系统的2PC和3PC的更多相关文章
- 分布式事务之深入理解什么是2PC、3PC及TCC协议?
导读 在上一篇文章<[分布式事务]基于RocketMQ搭建生产级消息集群?>中给大家介绍了基于RocketMQ如何搭建生产级消息集群.因为本系列文章最终的目的是介绍基于RocketMQ的事 ...
- 分布式系统的一致性协议之 2PC 和 3PC
在分布式系统领域,有一个理论,对于分布式系统的设计影响非常大,那就是 CAP 理论,即对于一个分布式系统而言,它是无法同时满足 Consistency(强一致性).Availability(可用性) ...
- 分布式事务(1)---2PC和3PC理论
分布式事务(1)---2PC和3PC理论 分布式事物基本理论:基本遵循CPA理论,采用柔性事物特征,软状态或者最终一致性特点保证分布式事物一致性问题. 分布式事物常见解决方案: 2PC两段提交协议 3 ...
- 分布式系统理论基础 - 一致性、2PC和3PC
引言 狭义的分布式系统指由网络连接的计算机系统,每个节点独立地承担计算或存储任务,节点间通过网络协同工作.广义的分布式系统是一个相对的概念,正如Leslie Lamport所说[1]: What is ...
- 【转载】分布式系统理论基础 - 一致性、2PC和3PC
引言 狭义的分布式系统指由网络连接的计算机系统,每个节点独立地承担计算或存储任务,节点间通过网络协同工作.广义的分布式系统是一个相对的概念,正如Leslie Lamport所说[1]: What is ...
- 分布式系统理论基础1: 一致性、2PC和3PC
本文转自 https://www.cnblogs.com/bangerlee/p/5268485.html 本系列文章将整理到我在GitHub上的<Java面试指南>仓库,更多精彩内容请到 ...
- 面试被问分布式事务(2PC、3PC、TCC),这样解释没毛病!
整理了一些Java方面的架构.面试资料(微服务.集群.分布式.中间件等),有需要的小伙伴可以关注公众号[程序员内点事],无套路自行领取 更多优选 一口气说出 9种 分布式ID生成方式,面试官有点懵了 ...
- 三:分布式事务一致性协议2pc和3pc
一:分布式一致性协议--->对于一个分布式系统进行架构设计的过程中,往往会在系统的可用性和数据一致性之间进行反复的权衡,于是就产生了一系列的一致性协议.--->长期探索涌现出一大批经典的一 ...
- 分布式一致性算法2PC和3PC
为了解决分布式一致性问题,产生了不少经典的分布式一致性算法,本文将介绍其中的2PC和3PC.2PC即Two-Phase Commit,译为二阶段提交协议.3PC即Three-Phase Commit, ...
随机推荐
- 「SNOI2017」礼物
题目链接:Click here Solution: 设\(f(x)\)代表第\(x\)个人送的礼物的数量,\(s(x)\)代表\(f(x)\)的前缀和,即: \[ f(x)=s(x-1)+x^k\\ ...
- 使用Python操作Excel文档(一)
Python | 使用Python操作Excel文档(一) 0 前言 在阅读本文之前,请确保您已满足或可能满足以下条件: 请确保您具备基本的Python编程能力. 请确保您会使用Excel. 请确保您 ...
- 关于自定义sparkSQL数据源(Hbase)操作中遇到的坑
自定义sparkSQL数据源的过程中,需要对sparkSQL表的schema和Hbase表的schema进行整合: 对于spark来说,要想自定义数据源,你可以实现这3个接口: BaseRelatio ...
- HTML状态消息和方法
参考链接1 参考链接2 当浏览器从 web 服务器请求服务时,可能会发生错误. HTML消息 1xx: 信息 消息: 描述: 100 Continue 服务器仅接收到部分请求,但是一旦服务器并没有拒绝 ...
- 7 Java 快速排序
快速排序(Quicksort)是对冒泡排序的一种改进. 1.基本思想 通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别 ...
- tp5 模型中 关联查询(省去了foreach写法)
1.控制器中 $list = Userlawsbook::where($where)->with('lawsbook')->paginate(7); // 此处查出来为数组对象 dump ...
- tp5更改入口文件到根目录的方法分享
tp5把入口文件放到了public目录中,对于服务器或者vps来说没啥,因为可以指定目录,但是对于虚拟主机就不行了,我们必须吧index.php这入口文件放到根目录,那么我么需要改一下相对的引入文件的 ...
- vue.js-动态绑定class 利用index实现导航
<template> <div class="stock"> <div class="buin_leftcont nav_ctrl" ...
- Java语言实现 Base64 加密 & 解密
Java语言实现 Base64 加密 & 解密 Base64是网络上最常见的用于传输8Bit字节码的编码方式之一,Base64就是一种基于64个可打印字符来表示二进制数据的方法. Base64 ...
- subprocess.call 使用
1.subprocess.call 里面的命令分开写,实例如下: subprocess.call 是不能作为赋值的,需要用到 subprocess.check_output 函数,而且如果要引用赋值就 ...