题意

原题

给出\(2n\)个\(\leq m\)的数,求最优的两两配对方案

使\(n\)组\((x,y)\)的\((x+y)mod \space m\)最大值最小

\(n\leq 10^5,m \leq 10^9\)

思路

排序后大胆猜测

发现结论是: 一定存在一种最优解,使得以某个位置为界,两边分别首尾匹配,且满足左边的每一对的和都\(<m\), 右边每一对的和都\(≥m\).

证明可以看题解,大概因为每一种别的形式的解都可以转化到它,一定的等价或更优的

这样子我们就容易得到\(O(n^2)\)的枚举+判断的写法

接着发现:

  • 界线越左,左边的每一对越容易变成第一类(数都变小了)。
  • 界线越左,右侧的每一对越难变第二类。
  • 在满足条件情况下,界线越左,最大值就越小。
  • 如果左边不满足,右边一定是满足(因为右边的数都比左边大加起来任然\(<m\),右边一定全部\(<m\))

也就是界线是可以二分的,所以就做完了

#include <bits/stdc++.h>
using std::max;
using std::min;
int n,m,a[200005],ans=0,Ans;
int main(){
scanf("%d%d",&n,&m);
for (int i=1;i<=n*2;i++)
scanf("%d",&a[i]);
std::sort(a+1,a+2*n+1);
int l=0,r=n;
while (l<=r){
int mid=(l+r)>>1;
bool f=true;
int t=mid<<1;
int ans=0;
if (f) for(int i=t+1,j=2*n;i<j;i++,j--)
if (a[i]+a[j]<m){
f=false;break;
}
if (f){
Ans=mid;
r=mid-1;
}else l=mid+1;
}
int t=Ans*2;
for (int i=1;i<=Ans;i++) ans=max(ans,a[i]+a[t-i+1]);
for(int i=t+1,j=2*n;i<j;i++,j--) ans=max(ans,a[i]+a[j]-m);
printf("%d\n",ans);
}

后记

连二分都能写错的我。。。

AGC032E modulo pairing的更多相关文章

  1. AtCoder AGC032E Modulo Pairing (二分、贪心与结论)

    题目链接 https://atcoder.jp/contests/agc032/tasks/agc032_e 题解 猜结论好题. 结论是: 按\(a_i\)从小到大排序之后,一定存在一种最优解,使得以 ...

  2. 「AGC032E」 Modulo Pairing

    「AGC032E」 Modulo Pairing 传送门 如果所有数都 \(<\lfloor \frac m 2\rfloor\),一个自然的想法是对所有数排序过后大小搭配,这样显然是最优秀的. ...

  3. Atcoder Grand Contest 032 E - Modulo Pairing(乱搞+二分)

    Atcoder 题面传送门 & 洛谷题面传送门 神仙调整+乱搞题. 首先某些人(including me)一看到最大值最小就二分答案,事实上二分答案对这题正解没有任何启发. 首先将 \(a_i ...

  4. Atcoder Grand Contest 032

    打的第一场Atcoder,已经知道会被虐得很惨,但没有想到竟然只做出一题-- 思维急需提升. A - Limited Insertion 这题还是很签到的. 感觉正着做不好做,我们反着来,把加数变为删 ...

  5. 【AtCoder】AGC032

    AGC032 A - Limited Insertion 这题就是从后面找一个最靠后而且当前可以放的,可以放的条件是它的前面正好放了它的数值-1个数 如果不符合条件就退出 #include <b ...

  6. cf319.B. Modulo Sum(dp && 鸽巢原理 && 同余模)

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  7. codeforces 577B B. Modulo Sum(水题)

    题目链接: B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  8. POJ1995 Raising Modulo Numbers

    Raising Modulo Numbers Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 6373   Accepted: ...

  9. Question about pairing/bonding?

    Except that on android you can bypass the pairing dialog if you know the PIN in advance through a di ...

随机推荐

  1. 【原创】大叔经验分享(76)confluence和jira配置

    一 下载 confluence https://product-downloads.atlassian.com/software/confluence/downloads/atlassian-conf ...

  2. Java API 之 SPI机制

    SPI SPI全称是service provider interface,是Java定义的一套服务发现机制,如图: 调用方只需要面向接口,接口的实现由第三方自己去实现,服务启动的时候会自动去发现该服务 ...

  3. 微信小程序编译提示tabar.iconPath 文件不存在

    tabBar.list[0].iconPath 文件不存在 明明是按路径放了本地图片的,却依然显示路径不存在 需要把路径的图片转移到编译后的weapp文件中相同路径下的img文件中 本地正常路径 粘贴 ...

  4. 如何用Visual Studio Code远程调试运行在服务器上的nodejs应用

    假设我有一个nodejs应用,运行在AWS - 亚马逊云平台上(Amazone Web Service).我想用本地的Visual Studio Code来远程调试服务器端的nodejs应用. Vis ...

  5. Mysql(三):表操作

    一 存储引擎介绍 存储引擎即表类型,mysql根据不同的表类型会有不同的处理机制 详见:http://www.cnblogs.com/6324TV/p/8481061.html 二 表介绍 表相当于文 ...

  6. K8S搭建过程随笔_系统初始化

    组件 Kubernetes 1.14.2 Docker 18.09.6-ce Etcd 3.3.13 Flanneld 0.11.0 基础环境设置 192.168.11.188 k8s-master ...

  7. Django_04_视图

    视图 后台管理页面做好了,接下来就要做公共访问的页面了 对于django的设计框架MVT,用户在URL中请求的是视图,视图接收请求后进行处理,并将处理的结果返回给请求者 使用视图时需要进行两步操作 1 ...

  8. Istio技术与实践04:最佳实践之教你写一个完整的Mixer Adapter

    Istio内置的部分适配器以及相应功能举例如下: circonus:微服务监控分析平台. cloudwatch:针对AWS云资源监控的工具. fluentd:开源的日志采集工具. prometheus ...

  9. 算法笔记--CDQ分治 && 整体二分

    参考:https://www.luogu.org/blog/Owencodeisking/post-xue-xi-bi-ji-cdq-fen-zhi-hu-zheng-ti-er-fen 前置技能:树 ...

  10. iview 如何在表格中给操作图标添加Tooltip文字提示?

    项目需要用到的iview 表格中操作项目有各种各样的图标,而各种各样的图标代表不同的操作,面对新用户可能很懵,那如何给这些图标添加Tooltip文字提示? 废话不多讲,直接看代码: <templ ...