传送门

这一题基础是二分图匹配,并且要知道一个 $Hall$ 定理:对于二分图能完全匹配的充要条件是,设点数少的那边为左边,点数为 $n$,对于 $k \in [1,n]$ ,左边任意 $k$ 个点,右边都要有至少有 $k$ 的点与左边这些点相连

证明好像也不难,首先必要性是显然的

然后考虑对于左边 $n$ 个点的集合,如果他满足 $Hall$ 定理并且存在一个点 $X_a$ 没法匹配,那么这个点 $X_a$ 连向的 $Y_{b,c,d..}$ 一定已经都有匹配,设此时是 $X_{b,c,d...}$ 匹配 $Y_{b,c,d...}$ ,

那么由 $Hall$ 定理得到 $X_a,X_{b,c,d...}$ 这些点构成的集合一定还有一条出边连向 $Y_{b,c,d}$ 之外的点(不然 $Y$ 的点数小于 $X$ 的点数),

所以可以这样一直增广下去最终一定能找到一条增广路

然后考虑如何保证题目中一定存在完全匹配,显然我们只要考虑连续的一段型号的人,这样会让右边空闲的位置尽量少

如果不合法那么一定存在连续的一段 $[l,r]$ ,使得 $\sum_{i=l}^{r}X_i>(r-l+1+d)*k$ ,其中 $X_i$ 为 $i$ 号脚的人的数量,式子表示人比鞋多

变一下式子即为 $\sum_{i=l}^{r}(X_i-k)>d*k$ ,所以我们只要能判断是否有连续的一段 $X-k$ 的和大于 $d*k$

直接用线段树维护一下最大子段和即可

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=4e5+;
int n,m,K,D;
struct Segtree {
ll sum[N<<],mx[N<<],lmx[N<<],rmx[N<<];
inline void pushup(int o)
{
int lc=o<<,rc=o<<|;
mx[o]=max( max(mx[lc],mx[rc]) , max(0ll,rmx[lc]+lmx[rc]) );
lmx[o]=max( max(0ll,lmx[lc]) , sum[lc]+lmx[rc] );
rmx[o]=max( max(0ll,rmx[rc]) , sum[rc]+rmx[lc] );
sum[o]=sum[lc]+sum[rc];
}
void build(int o,int l,int r)
{
if(l==r) { sum[o]=-K; return; }
int mid=l+r>>; build(o<<,l,mid); build(o<<|,mid+,r);
pushup(o);
}
void change(int o,int l,int r,int pos,int v)
{
if(l==r) { sum[o]+=v; lmx[o]=rmx[o]=mx[o]=max(0ll,sum[o]); return; }
int mid=l+r>>;
pos<=mid ? change(o<<,l,mid,pos,v) : change(o<<|,mid+,r,pos,v);
pushup(o);
}
ll query() { return mx[]; }
}T;
int main()
{
n=read(),m=read(),K=read(),D=read();
T.build(,,n); int a,b;
for(int i=;i<=m;i++)
{
a=read(),b=read(); T.change(,,n,a,b);
if(T.query()>1ll*K*D) printf("NIE\n");
else printf("TAK\n");
}
return ;
}

P3488 [POI2009]LYZ-Ice Skates的更多相关文章

  1. BZOJ1135: [POI2009]Lyz

    1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 264  Solved: 106[Submit][Status] ...

  2. [BZOJ 1135][POI2009]Lyz

    [BZOJ 1135][POI2009]Lyz 题意 初始时滑冰俱乐部有 \(1\) 到 \(n\) 号的溜冰鞋各 \(k\) 双.已知 \(x\) 号脚的人可以穿 \(x\) 到 \(x+d\) 的 ...

  3. 1135: [POI2009]Lyz

    1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二 ...

  4. 【BZOJ1135】[POI2009]Lyz 线段树

    [BZOJ1135][POI2009]Lyz Description 初始时滑冰俱乐部有1到n号的溜冰鞋各k双.已知x号脚的人可以穿x到x+d的溜冰鞋. 有m次操作,每次包含两个数ri,xi代表来了x ...

  5. bzoj 1135 [POI2009]Lyz 线段树+hall定理

    1135: [POI2009]Lyz Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 573  Solved: 280[Submit][Status][ ...

  6. 【BZOJ】1135: [POI2009]Lyz

    题意 有\(1\)到\(n(1 \le n \le 200000)\)号的溜冰鞋各\(k(1 \le k \le 10^9)\)双.已知\(x\)号脚的人可以穿\(x\)到\(x+d\)的溜冰鞋. 有 ...

  7. 【题解】 bzoj1135: [POI2009]Lyz (线段树+霍尔定理)

    题面戳我 Solution 二分图是显然的,用二分图匹配显然在这个范围会炸的很惨,我们考虑用霍尔定理. 我们任意选取穿\(l,r\)的号码鞋子的人,那么这些人可以穿的鞋子的范围是\(l,r+d\),这 ...

  8. 【BZOJ1135】[POI2009]Lyz

    题解: hall定理..第一次听说 思考了半小时无果 二分图匹配时间显然太大 但是有这个hall定理 二分图有完美匹配的充要条件是 对于左边任意一个集合(大小为|s|),其连边点构成的集合(大小为|s ...

  9. [BZOJ1135][POI2009]Lyz[霍尔定理+线段树]

    题意 题目链接 分析 这个二分图匹配模型直接建图的复杂度太高,考虑霍尔定理. 对于某些人组成的区间,我们只需要考虑他们的并是一段连续的区间的集合.更进一步地,我们考虑的人一定是连续的. 假设我们考虑的 ...

随机推荐

  1. Java 注解指导手册(下)

    9. 自定义注解   正如我们之前多次提及的,可以定义和实现自定义注解.本章我们即将探讨. 首先,定义一个注解:   public @interface CustomAnnotationClass   ...

  2. PHP ob_get_level嵌套输出缓冲

    PHP的输出缓存是可以嵌套的.用ob_get_level()就可以输出嵌套级别. 测试发现在cli和浏览器下输出结果不一样(PHP5.4). ob_level1.png手册说明如下: ob_get_l ...

  3. koa 基础(十二)koa-static 静态资源中间件 静态web服务

    1.目录 2.app.js /** * koa-static 静态资源中间件 静态web服务 * 1.npm install --save koa-static * 2.const static = ...

  4. leetcode-hard-array-11 Container With Most Water -NO

    mycode  time limited class Solution(object): def maxArea(self, height): """ :type hei ...

  5. DAY 6考试

    题解: 这题太水辣 注意开 long long 但我不是没开long long 的锅 我是 输出 long long 要用 lld 啊 大梦身先醒,80可海星 PS:百度了一下 long (ld) 和 ...

  6. 求一个整型数字中有没有相同的部分,例如12386123这个整型数字中相同的部分是123,相同的部分至少应该是2位数,如果有相同部分返回1,如果没有则返回0。方法是先将整型数字转换到数组中,再判断。函数为 int same(int num)其中num是输入的整型数字

    import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Test { pub ...

  7. php下关于字符串与数组的相互转换的函数

    public static function string2array($tags)    {        return preg_split('/\s*,\s*/',trim($tags),-1, ...

  8. C基础知识(5):指针--传递指针给函数&返回指针的函数

    下面从3个代码例子分别讲述以下2个知识点: (1) 传递指针给函数(参数类型为指针) (2) 返回指针的函数(返回类型为指针) #include <stdio.h> // 传递指针给函数& ...

  9. 在pythonanywhere.com免费网站建立虚拟机环境以及django网站

    注册,添加App,选择python3.5,然后打开控制台 搭建python3.5虚拟环境 python --version virtualenv -p /usr/bin/python3.5 VENV ...

  10. 我想学前端动画-CSS之transition

    Transition属性: 属性 描述 CSS transition 简写属性,用于在一个属性中设置四个过渡属性. 3 transition-property 规定应用过渡的 CSS 属性的名称.默认 ...