什么是梯度下降法与delta法则?
梯度下降法就是沿梯度下降的方向求解函数(误差)极小值。delta法则是使用梯度下降法来找到最佳权向量。拿数字识别这个案例为例,训练模型的过程通常是这样的。输入为1万张图片,也就是1万个样本,我们定义为D,是训练样例集合,输出为相对应的1万个数字。这就是1万个目标输出(Target),每一个目标输出我们定义为:td ,是训练样例d的目标输出。我们的模型训练的目的是想找出,此人工神经网络模型的参数,比如权向量w等。要注意,目标输出td是已知的(非变量,比如5这张图,目标输出就是5这个数字),样本也是已知的。参数是未知的。还有什么是未知的?这就需要从训练的过程入手了。训练过程,通常开始时,所有的权向量w都从一个很小的值开始,比如零,这时有一个实际输出(od是对训练样例d的实际输出)。目标输出和实际输出的差距叫做误差。因为一共有1万个样本,为了消除正负误差相抵,所以我们定义所有目标输出和实际输出的误差平方和的一半为E。(因为平方的求导会出现2,所以这就是取一半的原因,这样2×(1/2)会使系数消失。)
拿我们这章第一个例子,单个神经元的房子预测神经网络模型为例,不难理解:Od=x0*w0+x1*w1+…xn*wn+b,结合前面的分析可知,x0,x1,。。。。。xn都是一个个的样本值, 是已知的。td也是已知的。这样看E是w0,w1,....wn和b的函数。我们的目标就是找到一组权向量(w0,w1,....wn和b)能使E最小化。拿wi来说,我们可以画一条函数曲线:。。。。。。。。。。。。。。。。。。。
文章转载自原文:https://blog.csdn.net/qq_44639795/article/details/100599848
什么是梯度下降法与delta法则?的更多相关文章
- 梯度下降法原理与python实现
梯度下降法(Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离 ...
- matlib实现梯度下降法
样本文件下载:ex2Data.zip ex2x.dat文件中是一些2-8岁孩子的年龄. ex2y.dat文件中是这些孩子相对应的体重. 我们尝试用批量梯度下降法,随机梯度下降法和小批量梯度下降法来对这 ...
- 【math】梯度下降法(梯度下降法,牛顿法,高斯牛顿法,Levenberg-Marquardt算法)
原文:http://blog.csdn.net/dsbatigol/article/details/12448627 何为梯度? 一般解释: f(x)在x0的梯度:就是f(x)变化最快的方向 举个例子 ...
- 『科学计算_理论』优化算法:梯度下降法&牛顿法
梯度下降法 梯度下降法用来求解目标函数的极值.这个极值是给定模型给定数据之后在参数空间中搜索找到的.迭代过程为: 可以看出,梯度下降法更新参数的方式为目标函数在当前参数取值下的梯度值,前面再加上一个步 ...
- [机器学习] ML重要概念:梯度(Gradient)与梯度下降法(Gradient Descent)
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自网上的免费课程和一些经典书籍,免费课 ...
- 梯度下降法&牛顿法
梯度下降法 在机器学习任务中,需要最小化损失函数\(L(\theta)\),其中\(\theta\)是要求解的模型参数.梯度下降法是一种迭代方法,用到损失函数的一阶泰勒展开.选取初值\(\theta ...
- (3)梯度下降法Gradient Descent
梯度下降法 不是一个机器学习算法 是一种基于搜索的最优化方法 作用:最小化一个损失函数 梯度上升法:最大化一个效用函数 举个栗子 直线方程:导数代表斜率 曲线方程:导数代表切线斜率 导数可以代表方向, ...
- 机器学习中梯度下降法原理及用其解决线性回归问题的C语言实现
本文讲梯度下降(Gradient Descent)前先看看利用梯度下降法进行监督学习(例如分类.回归等)的一般步骤: 1, 定义损失函数(Loss Function) 2, 信息流forward pr ...
- 梯度下降法及一元线性回归的python实现
梯度下降法及一元线性回归的python实现 一.梯度下降法形象解释 设想我们处在一座山的半山腰的位置,现在我们需要找到一条最快的下山路径,请问应该怎么走?根据生活经验,我们会用一种十分贪心的策略,即在 ...
随机推荐
- investigate issues of real time interrupted
Issues: customer report that real time will interrupted frequently as below: Root Cause: some storm ...
- 洛谷P2114 起床困难综合症【位运算】【贪心】
题目:https://www.luogu.org/problemnew/show/P2114 题意:有n个操作,每个可以是与.或.异或 一个数. 初始值是0~m之间的一个数,问经过n个运算之后,可以得 ...
- 基本数据类型-MySQL
整型: TINYINT 最小 1个字节 -128~127 0~255 SMALLINT 较小 2个字节 -32768~32767 0~65535 MEDIUMINT 中等大小 3个字节 略 INT ...
- Matlab step方法
在Matlab中我们经常能看到Java的影子,即面向对象编程(Object Oriented Programming,OOP). 以Turbo编码为例: hTEnc = comm.TurboEncod ...
- 003_C/C++笔试题_分享大汇总
(一)感谢:lhzstudio 01_C++经典面试题全集 50~100道 都附带有参考答案 02_C++开发工程师面试题库 100~150道 03_C++笔试题库之编程.问答题 150~200道 0 ...
- mysql查看查询缓存是否启用
查看查询缓存情况: mysql> show variables like '%query_cache%'; (query_cache_type 为 ON 表示已经开启) +---------- ...
- PHP基础--traits的应用
Traits 在PHP中实现在方法的重复使用:Traits与Class相似,但是它能够在Class中使用自己的方法而不用继承: Traits在Class中优先于原Class中的方法,引用PHP Doc ...
- DUILib学习笔记---消息处理
WIN32下窗口消息循环 MSG msg = { 0 }; while( ::GetMessage(&msg, NULL, 0, 0) ) { ::TranslateMessage(& ...
- UVALive 3716 DNA Regions ——(式子变形)
一开始直接想到了二分,写了一发然后过了全部样例就交了,果断WA.因为这个问题显然是不满足单调性的. 然后想之前刚做的斜率优化DP,但是那个是求斜率最大值,不是求满足斜率大于一定值的最大长度的.也构造不 ...
- 游览器中javascript的执行过程
在讲这个问题之前,先来补充几个知识点,如果对此已经比较了解可以直接跳过 大多数游览器的组件构成如图 在最底层的三个组件分别是网络,UI后端和js解释器.作用如下: (1)网络- 用来完成网络调用,例如 ...