[CEOI1999]Sightseeing trip

Description

There is a travel agency in Adelton town on Zanzibar island. It has decided to offer its clients, besides many other attractions, sightseeing the town. To earn as much as possible from this attraction, the agency has accepted a shrewd decision: it is necessary to find the shortest route which begins and ends at the same place. Your task is to write a program which finds such a route.

In the town there are N crossing points numbered from 1 to N and M two-way roads numbered from 1 to M. Two crossing points can be connected by multiple roads, but no road connects a crossing point with itself. Each sightseeing route is a sequence of road numbers y_1, ..., y_k, k>2. The road y_i (1<=i<=k-1) connects crossing points x_i and x_{i+1}, the road y_k connects crossing points x_k and x_1. All the numbers x_1,...,x_k should be different.The length of the sightseeing route is the sum of the lengths of all roads on the sightseeing route, i.e. L(y_1)+L(y_2)+...+L(y_k) where L(y_i) is the length of the road y_i (1<=i<=k). Your program has to find such a sightseeing route, the length of which is minimal, or to specify that it is not possible,because there is no sightseeing route in the town.

Input

The first line of input contains two positive integers: the number of crossing points N<=100 and the number of roads M<=10000. Each of the next M lines describes one road. It contains 3 positive integers: the number of its first crossing point, the number of the second one, and the length of the road (a positive integer less than 500).

Output

There is only one line in output. It contains either a string 'No solution.' in case there isn't any sightseeing route, or it contains the numbers of all crossing points on the shortest sightseeing route in the order how to pass them (i.e. the numbers x_1 to x_k from our definition of a sightseeing route), separated by single spaces. If there are multiple sightseeing routes of the minimal length, you can output any one of them.

Sample Input

5 7

1 4 1

1 3 300

3 1 10

1 2 16

2 3 100

2 5 15

5 3 20

Sample Output

1 3 5 2

无向图的最小环问题。

当外层循环\(k\)刚开始时,\(dis[i][j]\)保存着经过编号不超过\(k-1\)的节点从\(i\)到\(j\)的最短路长度。

于是,\(min(dis[i][j]+a[j][k]+a[k][i])\)(一定注意是a[j][k]+a[k][i],因为dis[i][j]表示\(i\)走到\(j\)的距离,所以要从\(j\)走到\(k\),从\(k\)走到\(i\))

表示由编号不超过\(k\)的节点构成,经过节点\(k\)的环。对于\(\forall\) \(k\) \(\in\) \([1,n]\)都取最小值,即可得到整张图的最小环。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
int read()
{
int x=0,w=1;char ch=getchar();
while(ch>'9'||ch<'0') {if(ch=='-')w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
const int N=310;
int n,m,ans=0x3f3f3f3f,x,y,z,cnt;
int a[N][N],dis[N][N],path[N][N],qwe[N];
void print(int x,int y)
{
if(!path[x][y]) return;
print(x,path[x][y]);
qwe[++cnt]=path[x][y];
print(path[x][y],y);
}
void floyed()
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<k;i++)
for(int j=i+1;j<k;j++)
{
if((long long)dis[i][j]+a[j][k]+a[k][i]<ans)
{
ans=dis[i][j]+a[j][k]+a[k][i];
cnt=0;qwe[++cnt]=i;
print(i,j);
qwe[++cnt]=j;qwe[++cnt]=k;
}
}
for(int i=1;i<=n;i++)
{if(i==k) continue;
for(int j=1;j<=n;j++)
{if(j==k||j==i) continue;
if(dis[i][j]>dis[i][k]+dis[k][j])
{
dis[i][j]=dis[i][k]+dis[k][j];
path[i][j]=k;
}
}
}
}
}
int main()
{
n=read();m=read();memset(a,0x3f,sizeof(a));
for(int i=1;i<=m;i++)
{
x=read();y=read();z=read();
a[x][y]=a[y][x]=min(a[x][y],z);
}
memcpy(dis,a,sizeof(a));
floyed();
if(ans==0x3f3f3f3f) printf("No solution.");
else for(int i=1;i<=cnt;i++) printf("%d ",qwe[i]);
}

[CEOI1999]Sightseeing trip(Floyed)的更多相关文章

  1. URAL 1004 Sightseeing Trip(最小环)

    Sightseeing Trip Time limit: 0.5 secondMemory limit: 64 MB There is a travel agency in Adelton town ...

  2. 「LOJ#10072」「一本通 3.2 例 1」Sightseeing Trip(无向图最小环问题)(Floyd

    题目描述 原题来自:CEOI 1999 给定一张无向图,求图中一个至少包含 333 个点的环,环上的节点不重复,并且环上的边的长度之和最小.该问题称为无向图的最小环问题.在本题中,你需要输出最小环的方 ...

  3. POJ 1734.Sightseeing trip (Floyd 最小环)

    Floyd 最小环模板题 code /* floyd最小环,记录路径,时间复杂度O(n^3) 不能处理负环 */ #include <iostream> #include <cstr ...

  4. URAL 1004 Sightseeing Trip(floyd求最小环+路径输出)

    https://vjudge.net/problem/URAL-1004 题意:求路径最小的环(至少三个点),并且输出路径. 思路: 一开始INF开大了...无限wa,原来相加时会爆int... 路径 ...

  5. POJ1734 Sightseeing trip (Floyd求最小环)

    学习了一下用Floyd求最小环,思路还是比较清晰的. 1 #include<iostream> 2 #include<cstdio> 3 #include<cstring ...

  6. HDU 3018 Ant Trip (欧拉回路)

    Ant Trip Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...

  7. cf B. Mishka and trip (数学)

    题意   Mishka想要去一个国家旅行,这个国家共有个城市,城市通过道路形成一个环,即第i个城市和第个城市之间有一条道路,此外城市和之间有一条道路.这个城市中有个首中心城市,中心城市与每个城市(除了 ...

  8. [POJ 1637] Sightseeing tour(网络流)

    题意 (混合图的欧拉回路判定) 给你一个既存在有向边, 又存在无向边的图. 问是否存在欧拉回路. \(N ≤ 200, M ≤ 1000\) 题解 难点在于无向边. 考虑每个点的度数限制. 我们先对无 ...

  9. 闭包传递(floyed)

    题目链接: https://cn.vjudge.net/contest/66569#problem/H 题目大意: n代表母牛的个数,m代表给定的信息的组数.每一组数包括a,b. 代表b崇拜a(突然发 ...

随机推荐

  1. CentOS下Hive搭建

    目录 1. 前言 2. MySQL安装 2.1 更换yum下载源 2.2 开启MySQL远程登录 3. Hive安装 3.1 下载Hive 3.2 安装Hive和更改配置文件 4. MySQL驱动包的 ...

  2. DRF视图-5个扩展类以及GenericAPIView基类

    视图 5个视图扩展类 视图拓展类的作用: 提供了几种后端视图(对数据资源进行曾删改查)处理流程的实现,如果需要编写的视图属于这五种,则视图可以通过继承相应的扩展类来复用代码,减少自己编写的代码量. 这 ...

  3. lua程序设计(第4版)第二章习题

    练习2.1:修改八皇后问题的程序,使其在输出第一个解后即停止运行. 解法:要使得有一个解就返回,首先要获得一个解,然后再返回或停止运行 练习2.2:解决八皇后问题的另一种方式是,先生成1-8之间的所有 ...

  4. 修改umask后apache报错:because search permissions are missing on a component of the path,

    0.修改umask后apache报错:because search permissions are missing on a component of the path, 1.ls -lrth ./h ...

  5. 截取铃声python代码

    from pydub import AudioSegment file_name = "张杰 - 这就是爱.mp3" sound = AudioSegment.from_mp3(f ...

  6. ArrayList与LinkedList的区别,如何减少嵌套循环的使用

    如果要减少嵌套循环的使用: 我们可以将需要在二重循环里面判断的条件放在一个Map的key里面: 在判断的时候只需要进行key是否存在,然后操作接下来的步骤: 这样子就会减少二重循环了,不会发生循环n* ...

  7. Python安装及环境变量

    针对windows操作系统 1.下载安装包,python官网下载(https://www.python.org/) python3.7.4:下载https://www.python.org/downl ...

  8. Python三大主流框架的对比

    相信做Python这一块的程序员都有听说这三个框架,就像神一样的存在,每一个框架的介绍我就不写出来了,感兴趣可以自己百度了解了解!下面我就说正事 Django:Python 界最全能的 web 开发框 ...

  9. linux 下用find命令查找文件,rm命令删除文件

    linux 下用find命令查找文件,rm命令删除文件. 删除指定目录下指定文件find 要查找的目录名 -name .svn |xargs rm -rf 删除指定名称的文件或文件夹: find -t ...

  10. Fabric的简介

    1,初识fabric 1,什么是fabric fabric是一个Python的库和命令行工具,用来提高基于SSH的应用部署和系统管理的效率. 简单来说: (1)一个让你通过命令行执行无参数python ...