D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)
D - Yet Another Problem On a Subsequence
The sequence of integers a1,a2,…,aka1,a2,…,ak is called a good array if a1=k−1a1=k−1 and a1>0a1>0. For example, the sequences [3,−1,44,0],[1,−99][3,−1,44,0],[1,−99] are good arrays, and the sequences [3,7,8],[2,5,4,1],[0][3,7,8],[2,5,4,1],[0] — are not.
A sequence of integers is called good if it can be divided into a positive number of good arrays. Each good array should be a subsegment of sequence and each element of the sequence should belong to exactly one array. For example, the sequences [2,−3,0,1,4][2,−3,0,1,4], [1,2,3,−3,−9,4][1,2,3,−3,−9,4] are good, and the sequences [2,−3,0,1][2,−3,0,1], [1,2,3,−3−9,4,1][1,2,3,−3−9,4,1] — are not.
For a given sequence of numbers, count the number of its subsequences that are good sequences, and print the number of such subsequences modulo 998244353.
Input
The first line contains the number n (1≤n≤103)n (1≤n≤103) — the length of the initial sequence. The following line contains nn integers a1,a2,…,an (−109≤ai≤109)a1,a2,…,an (−109≤ai≤109) — the sequence itself.
Output
In the single line output one integer — the number of subsequences of the original sequence that are good sequences, taken modulo 998244353.
Examples
Input
32 1 1
Output
2
Input
41 1 1 1
Output
7
Note
In the first test case, two good subsequences — [a1,a2,a3][a1,a2,a3] and [a2,a3][a2,a3].
In the second test case, seven good subsequences — [a1,a2,a3,a4],[a1,a2],[a1,a3],[a1,a4],[a2,a3],[a2,a4][a1,a2,a3,a4],[a1,a2],[a1,a3],[a1,a4],[a2,a3],[a2,a4] and [a3,a4][a3,a4].
题意:
定义个good array 是这个数组的长度为len时,a[1]=len-1
good sequence的本质就是多个good array相连,
现在给你一个含有n个数的数组,问你the number of subsequences of the original sequence that are good sequences,
思路:
定义dp[i] 表示从i到n,由i开头的good subsequence个数
这样dp[i]里每个情况都是由i开头的一个good array后面连good sequence。我们枚举good sequence可以接的位置是 j = i+a[i]+1 到 n,转移方程就是dp[i] = C(j-i-1,a[i] ) * d p [j ]
最后考虑如果一个good array后面不接sequence的情况,那就是c[ n-i ][ a[i] ]个情况,我们可以把j放宽到n+1,并把dp[n+1]设成1来解决这个问题。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2) { ans = ans * a % MOD; } a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int *p);
const int maxn = 1010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
const ll mod = 998244353ll;
ll dp[maxn];
ll C[maxn][maxn];
ll a[maxn];
int n;
void init()
{
repd(i, 0, n) {
C[i][1] = i;
C[i][0] = 1ll;
C[i][i] = 1ll;
}
repd(i, 1, n) {
repd(j, 1, n) {
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod;
}
}
}
int main()
{
//freopen("D:\\code\\text\\input.txt","r",stdin);
//freopen("D:\\code\\text\\output.txt","w",stdout);
gbtb;
cin >> n;
repd(i, 1, n) {
cin >> a[i];
}
init();
dp[n + 1] = 1ll;
for (int i = n; i >= 1; --i) {
int j = i + a[i] + 1;
if (a[i] <= 0 || j > n + 1) {
continue;
}
for (j; j <= n + 1; ++j) {
dp[i] = (dp[i] + C[j - i - 1][a[i]] * dp[j]) % mod;
}
}
for (int i = n - 1; i >= 1; --i) {
dp[i] = (dp[i] + dp[i + 1]) % mod;
}
cout << dp[1] << endl;
return 0;
}
inline void getInt(int *p)
{
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
} else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}
D - Yet Another Problem On a Subsequence CodeForces - 1000D (DP,组合数学)的更多相关文章
- Yet Another Problem On a Subsequence CodeForces - 1000D (组合计数)
大意:定义一个长为$k>1$且首项为$k-1$的区间为好区间. 定义一个能划分为若干个好区间的序列为好序列. 给定序列$a$, 求有多少个子序列为好序列. 刚开始一直没想出来怎么避免重复计数, ...
- Consecutive Subsequence CodeForces - 977F(dp)
Consecutive Subsequence CodeForces - 977F 题目大意:输出一序列中的最大的连续数列的长度和与其对应的下标(连续是指 7 8 9这样的数列) 解题思路: 状态:把 ...
- Sonya and Problem Wihtout a Legend CodeForces - 714E (dp)
大意: 给定序列, 每次操作可以任选一个数+1/-1, 求最少操作数使序列严格递增. 序列全-i后转化为求最少操作数使序列非降, 那么贪心可以知道最后$a_i$一定是修改为某一个$a_j$了, 暴力d ...
- New Year and Old Subsequence CodeForces - 750E (dp矩阵优化)
大意: 给定字符串, 每次询问区间[l,r]有子序列2017, 无子序列2016所需要删除的最小字符数 转移用矩阵优化一下, 要注意$(\mathbb{Z},min,+)$的幺元主对角线全0, 其余全 ...
- D. Yet Another Problem On a Subsequence 解析(DP)
Codeforce 1000 D. Yet Another Problem On a Subsequence 解析(DP) 今天我們來看看CF1000D 題目連結 題目 略,請直接看原題 前言 這題提 ...
- HDU 1159 Common Subsequence 公共子序列 DP 水题重温
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1159 Common Subsequence Time Limit: 2000/1000 MS (Jav ...
- hdu 1159(Common Subsequence)简单dp,求出最大的公共的字符数
Common Subsequence Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Other ...
- HDU 1159.Common Subsequence【动态规划DP】
Problem Description A subsequence of a given sequence is the given sequence with some elements (poss ...
- Problem D: 勤奋的涟漪2 dp + 求导
http://www.gdutcode.sinaapp.com/problem.php?cid=1049&pid=3 dp[i][state]表示处理了前i个,然后当前状态是state的时候的 ...
随机推荐
- 撸了一个简易的工具库: jeasy
一年前,发现在工作的项目中存在大量使用monment的情况,但仅使用到最基础的format功能.monment的体积直接导致项目体积成倍增加,于是jeasy就诞生了. jeasy实现了monment最 ...
- Windows WSL 安装OpenCV
安装WSL 启动WSL功能 首先启动WSL功能,下面提供两个办法 Powershell --> 管理员权限 --> 运行 Enable-WindowsOptionalFeature -On ...
- 【POJ - 1970】The Game(dfs)
-->The Game 直接中文 Descriptions: 判断五子棋棋局是否有胜者,有的话输出胜者的棋子类型,并且输出五个棋子中最左上的棋子坐标:没有胜者输出0.棋盘是这样的,如图 Samp ...
- ipad3 修理记录
1,左下角 有视频线 2,右下角 有WIFI线
- Oracle-DQL 3- 单行函数
单行函数: --使用函数对表中的数据进行运算和处理,针对每行数据返回一个结果,叫做单行函数--包括数字函数,字符函数,日期函数,转换函数,其他函数 1.数字函数 --round(m,n) 将数字m精确 ...
- OracleLinux6安装
针对Oracle数据库安装的linux系统 1.首先要有oracle linux的镜像 链接:https://pan.baidu.com/s/1S3xYr4YNGtU-351bVaS1-Q 提取码:a ...
- 小程序api使用报错
小程序连接api报错: 如若已在管理后台更新域名配置,请刷新项目配置后重新编译项目,操作路径:“项目-域名信息” 解决办法如下: 点击设置—-项目设置—勾选如下选项即可解决
- Hadoop-(Flume)
Hadoop-(Flume) 1. Flume 介绍 1.1. 概述 Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume可以采集文件,socket数据包.文件.文件夹 ...
- Vue.js学习笔记-script标签在head和body的区别
初学JavaScript,项目需要没有系统学习,只能边查资料边码代码,埋下的坑不知道有多少,还是建议时间充足的情况下系统的将Javascript学习一遍 ,涉及的HTML知识也务必了解. 问题 最开始 ...
- php 合成图片,合成圆形图片
合成图片方法 <?php class Share { /* * 生成分享图片 * */ function cre_share_study_img(){ $auth = json_decode(b ...