题意

给一个长度为\(n\)的数组,你可以有两种操作

  • 将某一个数放置在数组开头
  • 将某一个数放置在数组结尾

问最小操作多少次可以得到一个非递减数列

(比\(F1\)难在\(n\)变大,且数组中元素可以有相同的)

分析

因为数组中的数很大,我们可以将其离散化然后操作,则\(a[i]\)为连续的整数,设\(tot\)种不同的数,则\(1\leq a[i] \leq tot\)

每个数最多操作一次,否则第一次可以不操作,那么我们就要找最多的不需要操作的数,如果不需要操作,则元素的位置不变,如果有这么一组不需要操作的数,我们可以发现,中间的数字是不能插进去的,所以这组数是在排序后仍相邻的数,则要找到最长的子序列,这个子序列在排序后仍然相邻,考虑以下几种情况

  • 这组数相同,则没有限制
  • 这组数中含有两种数,则要形如\(i,i,i,i+1,i+1\)这种形式,即排序后仍相邻
  • 这组数含有三种以上的数,即形如\(i,i,i+1,i+2,i+2,i+3\)这种形式,那么中间的数(\(i+1\),\(i+2\))一定是被取完了,否则其他的\(i+1\)或者\(i+2\)要插进去只能重新排序,与中间数字不能插进去不符,即这几个数并不是相邻,例如\(i,i+1,i+2,i+1\)这种序列,\(i,i+1,i+2\)并不满足条件,因为\(i+1\)并没取完

设\(dp[i][0]\)为只取相同的数且以\(a[i]\)为结尾所得到的最长子序列,\(dp[i][1]\)为\(a[i]\)还没取完且所得到的以\(a[i]\)为结尾最长子序列,\(dp[i][2]\)为\(a[i]\)取完且以\(a[i]\)为结尾所得到的最长子序列,我们用\(pos[i]\)表示数字\(i\)上次出现的位置,因为离散化了,所以数组可以满足,状态转移方程为(​\(r[a[i]]\)表示\(a[i]\)最后出现的位置,\(l[a[i]]\)表示\(a[i]\)最早出现的位置,\(num[a[i]]\)表示\(a[i]\)的个数,\(pos[a[i]]\)表示上一个\(a[i]\)出现的位置):

dp[i][0] = dp[pos[a[i]]][0] + 1;
dp[i][1] = max(dp[pos[a[i]]][1] + 1, max(dp[pos[a[i] - 1]][0] + 1, dp[pos[a[i] - 1]][2] + 1));
if (i == r[a[i]])
dp[i][2] = dp[l[a[i]]][1] + num[a[i]] - 1;
  • \(dp[i][0]\),方程表示上一个位置的\(a[i]\)接着取
  • \(dp[i][1]\),方程表示上一个\(a[i]\)接着取,或者上一个\(a[i]-1\)接着取,或者\(a[i]-1\)已经全部取完后接着取
  • \(dp[i][2]\),方程表示从最早出现的\(a[i]\)开始,后面都只取\(a[i]\)
#pragma GCC optimize(3, "Ofast", "inline")

#include <bits/stdc++.h>

#define start ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
#define ll long long
#define int ll
#define ls st<<1
#define rs st<<1|1
#define pii pair<int,int>
#define rep(z, x, y) for(int z=x;z<=y;++z)
#define com bool operator<(const node &b)
using namespace std;
mt19937 rnd(chrono::high_resolution_clock::now().time_since_epoch().count());
const int maxn = (ll) 2e5 + 5;
const int mod = 998244353;
const int inf = 0x3f3f3f3f;
int T = 1;
int a[maxn], b[maxn];
int dp[maxn][3];
int l[maxn], r[maxn];
int pos[maxn], num[maxn]; void solve() {
int n;
cin >> n;
rep(i, 1, n)cin >> a[i], b[i] = a[i], dp[i][0] = dp[i][1] = dp[i][2] = 0, l[i] = r[i] = 0, num[i] = 0;
sort(b + 1, b + n + 1);
int tot = unique(b + 1, b + n + 1) - (b + 1);
rep(i, 1, n) {
a[i] = lower_bound(b + 1, b + tot + 1, a[i]) - b;
r[a[i]] = i;
if (!l[a[i]])
l[a[i]] = i, pos[a[i]] = i;
++num[a[i]];
}
int maxx = 1;
rep(i, 1, n) {
dp[i][0] = dp[pos[a[i]]][0] + 1;
dp[i][1] = max(dp[pos[a[i]]][1] + 1, max(dp[pos[a[i] - 1]][0] + 1, dp[pos[a[i] - 1]][2] + 1));
if (i == r[a[i]])
dp[i][2] = dp[l[a[i]]][1] + num[a[i]] - 1;
pos[a[i]] = i;
rep(j, 0, 2)maxx = max(maxx, dp[i][j]);
}
cout << n - maxx << '\n';
} signed main() {
start;
cin >> T;
while (T--)
solve();
return 0;
}

CodeForces 1367F2 Flying Sort (Hard Version)的更多相关文章

  1. Codeforces Round #650 (Div. 3) F1. Flying Sort (Easy Version) (离散化,贪心)

    题意:有一组数,每次操作可以将某个数移到头部或者尾部,问最少操作多少次使得这组数非递减. 题解:先离散化将每个数映射为排序后所对应的位置,然后贪心,求最长连续子序列的长度,那么最少的操作次数一定为\( ...

  2. codeforces 258div2 B Sort the Array

    题目链接:http://codeforces.com/contest/451/problem/B 解题报告:给出一个序列,要你判断这个序列能不能通过将其中某个子序列翻转使其成为升序的序列. 我的做法有 ...

  3. codeforces#1290E2 - Rotate Columns (hard version)(子集dp)

    题目链接: https://codeforces.com/contest/1209/problem/E2 题意: 给出$n$行和$m$列 每次操作循环挪动某列一次 可以执行无数次这样的操作 让每行最大 ...

  4. codeforces#1165 F2. Microtransactions (hard version) (二分+贪心)

    题目链接: https://codeforces.com/contest/1165/problem/F2 题意: 需要买$n$种物品,每种物品$k_i$个,每个物品需要两个硬币 每天获得一个硬币 有$ ...

  5. Codeforces 1326F2 - Wise Men (Hard Version)(FWT+整数划分)

    Codeforces 题目传送门 & 洛谷题目传送门 qwq 这题大约是二十来天前 AC 的罢,为何拖到此时才完成这篇题解,由此可见我是个名副其实的大鸽子( 这是我上 M 的那场我没切掉的 F ...

  6. codeforces 724B Batch Sort(暴力-列交换一次每行交换一次)

    题目链接:http://codeforces.com/problemset/problem/724/B 题目大意: 给出N*M矩阵,对于该矩阵有两种操作: (保证,每行输入的数是 1-m 之间的数且不 ...

  7. CodeForces 742B Batch Sort

    B. Batch Sort time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  8. quick sort java version

    import java.util.Random; public class test { public static void main(String[] args) { int[] arr= gen ...

  9. codeforces 340D Bubble Sort Graph(dp,LIS)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud  Bubble Sort Graph Iahub recently has lea ...

  10. Less or Equal CodeForces - 977C (sort+细节)

    You are given a sequence of integers of length nn and integer number kk. You should print any intege ...

随机推荐

  1. c#构建具有用户认证与管理的socks5代理服务端

    Socks 协议是一种代理 (Proxy) 协议, 例如我们所熟知的 Shdowsocks 便是 Socks 协议的一个典型应用程序, Socks 协议有多个版本, 目前最新的版本为 5, 其协议标准 ...

  2. MD5加密后为0e开头的字符串

    QNKCDZO         0e830400451993494058024219903391 s878926199a      0e545993274517709034328855841020 s ...

  3. ES5 apply与call详解

    虽然es6已经出台了很多简单的方法替代了apply和call,但是还是有很多老大项目使用到了es5的这些方法,所以对于这些方法的掌握是有必要的 先回顾一下官方对apply.call的诠释 apply方 ...

  4. nginx 反向代理proxy_pass 后加斜杠和不加斜杆的区别

    今日准备使用nginx 将上次使用docker 部署的一个vue项目进行地址代理,让他看起来高达尚一点,原本docker打包的镜像只是向外暴露了一个8191的端口,访问的时候就只能是 http://w ...

  5. drf——jwt

    jwt原理 使用jwt认证和使用session认证的区别 三段式 eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibm ...

  6. c# 如何将枚举以下拉数据源的形式返回给前端

    前言: 相信各位有碰到过与我类似的问题,当表中存一些状态的字段,无非以下几种形式1.直接写死 如: 正常:1,异常:2 ,还有一种则是写在字典中,再或者就是加在枚举上,前两者对于返回下拉数据源来说比较 ...

  7. 宋红康-Java基础复习笔记详细版

    Java基础复习笔记 第01章:Java语言概述 1. Java基础学习的章节划分 第1阶段:Java基本语法 Java语言概述.Java的变量与进制.运算符.流程控制语句(条件判断.循环结构).br ...

  8. 如何扩展及优化CI/CD流水线?

    如今应用程序的开发通常由多个开发人员组成的团队完成.每个人或团队在项目中发挥自己的作用,然后我们发现在项目的末尾总是有几段代码需要编译,根据每个人的工作方法,管理这种集成可能会浪费很多时间.持续集成和 ...

  9. 基于GPT搭建私有知识库聊天机器人(一)实现原理

    1.成品演示 支持微信聊天 支持网页聊天 支持微信语音对话 支持私有知识文件训练,并针对文件提问 步骤1:准备本地文件a.txt,支持pdf.txt.markdown.ppt等 步骤2:上传a.txt ...

  10. 【Oracle】行转列的函数wm_concat,listagg,xmlagg,pivot以及动态行转列

    [Oracle]行转列的几种情况 表的数据如下 朴实无华的函数 1.wm_concat 使用格式: select 分组字段,wm_concat(要转换的列名) from 表名 group by 分组字 ...