D. Slalom

time limit per test:2 seconds
memory limit per test:256 megabytes
input:standard input
output:standard output

Little girl Masha likes winter sports, today she's planning to take part in slalom skiing.

The track is represented as a grid composed of n × m squares. There are rectangular obstacles at the track, composed of grid squares. Masha must get from the square (1, 1) to the square (n, m). She can move from a square to adjacent square: either to the right, or upwards. If the square is occupied by an obstacle, it is not allowed to move to that square.

One can see that each obstacle can actually be passed in two ways: either it is to the right of Masha's path, or to the left. Masha likes to try all ways to do things, so she would like to know how many ways are there to pass the track. Two ways are considered different if there is an obstacle such that it is to the right of the path in one way, and to the left of the path in the other way.

Help Masha to find the number of ways to pass the track. The number of ways can be quite big, so Masha would like to know it modulo109 + 7.

The pictures below show different ways to pass the track in sample tests.

Input

The first line of input data contains three positive integers: nm and k (3 ≤ n, m ≤ 106, 0 ≤ k ≤ 105) — the size of the track and the number of obstacles.

The following k lines contain four positive integers each: x1, y1, x2, y2 (1 ≤ x1 ≤ x2 ≤ n, 1 ≤ y1 ≤ y2 ≤ m) — coordinates of bottom left, and top right squares of the obstacle.

It is guaranteed that there are no obstacles at squares (1, 1) and (n, m), and no obstacles overlap (but some of them may touch).

Output

Output one integer — the number of ways to pass the track modulo 109 + 7.

Examples

input
3 3 0
output
1
input
4 5 1
2 2 3 4
output
2
input
5 5 3
2 2 2 3
4 2 5 2
4 4 4 4
output
3

Solution

和BZOJ4422是一个类型的题。线段树扫描线+差分 优化DP    (传送门)

这个题也是一样的,转移比较好想就不说了.

把每个障碍分左边右边记录下来,然后一维线段树一维扫描线。

线段树支持区间覆盖,单点修改,区间查询和即可。

写扫描线都用结构体,记录一下x,y1,y2,0/1。这样排序会比较麻烦...有个不错的姿势,就是对每个x建一个vector,vector里面存一个pair,这样会非常方便。

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<set>
using namespace std;
#define LL long long
inline int read()
{
int x=; char ch=getchar();
while (ch<'' || ch>'') {ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x;
}
#define MOD 1000000007
#define MAXN 1000010
int N,M,K,tp;
namespace SegmentTree
{
struct SegmentTreeNode{int l,r,size,cov,sum;}tree[MAXN<<];
#define ls now<<1
#define rs now<<1|1
inline void Update(int now) {tree[now].sum=tree[ls].sum+tree[rs].sum; tree[now].sum%=MOD;}
inline void BuildTree(int now,int l,int r)
{
tree[now].l=l; tree[now].r=r; tree[now].size=r-l+; tree[now].cov=-;
if (l==r) return;
int mid=(l+r)>>;
BuildTree(ls,l,mid); BuildTree(rs,mid+,r);
Update(now);
}
inline void cover(int now,int D) {tree[now].cov=D; tree[now].sum=(LL)tree[now].size*D%MOD;}
inline void PushDown(int now)
{
if (tree[now].l==tree[now].r) return;
if (tree[now].cov!=-) cover(ls,tree[now].cov),cover(rs,tree[now].cov),tree[now].cov=-;
}
inline void Cover(int now,int L,int R,int D)
{
if (R<L) return;
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (L<=l && R>=r) {cover(now,D); return;}
int mid=(l+r)>>;
if (L<=mid) Cover(ls,L,R,D);
if (R>mid) Cover(rs,L,R,D);
Update(now);
}
inline void Modify(int now,int pos,int D)
{
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (l==r) {cover(now,D); return;}
int mid=(l+r)>>;
if (pos<=mid) Modify(ls,pos,D);
else Modify(rs,pos,D);
Update(now);
}
inline int Query(int now,int L,int R)
{
if (R<L) return ;
int l=tree[now].l,r=tree[now].r;
PushDown(now);
if (L<=l && R>=r) return tree[now].sum;
int mid=(l+r)>>,re=;
if (L<=mid) (re+=Query(ls,L,R))%=MOD;
if (R>mid) (re+=Query(rs,L,R))%=MOD;
return re;
}
}
struct LineNode{int x,y1,y2,f;}Line[MAXN<<];
bool cmp(LineNode A,LineNode B) {return A.x==B.x? A.y1==B.y1? A.y2>B.y2 : A.y1>B.y1 : A.x<B.x;}
#define Pa pair<int,int>
set<Pa>mp;
set<Pa>::iterator is;
Pa loc;
int main()
{
N=read(),M=read(),K=read();
for (int x1,x2,y1,y2,i=; i<=K; i++)
x1=read(),y1=read(),x2=read(),y2=read(),
Line[++tp].x=x1,Line[tp].y1=y1,Line[tp].y2=y2,Line[tp].f=,
Line[++tp].x=x2+,Line[tp].y1=y1,Line[tp].y2=y2,Line[tp].f=;
SegmentTree::BuildTree(,,M);
SegmentTree::Modify(,,);
sort(Line+,Line+tp+,cmp);
int X=;
for (int i=; Line[i].x==; X++,i++) if (Line[i].f) mp.insert(make_pair(Line[i].y1,Line[i].y2));
mp.insert(make_pair(,));
for (int i=; i<=N; i++)
{
for (int j=X,tmp; Line[j].x==i; j++)
if (Line[j].f)
if (Line[j].y2<M)
loc=(*--mp.lower_bound(make_pair(Line[j].y2+,))),
tmp=SegmentTree::Query(,loc.second+,Line[j].y2+),
SegmentTree::Modify(,Line[j].y2+,tmp);
for (int j=X; Line[j].x==i; j++) if (!Line[j].f) mp.erase(make_pair(Line[j].y1,Line[j].y2));
for (int j=X; Line[j].x==i; X++,j++)
if (Line[j].f) mp.insert(make_pair(Line[j].y1,Line[j].y2)),SegmentTree::Cover(,Line[j].y1,Line[j].y2,);
}
loc=*(--mp.end());
printf("%d\n",SegmentTree::Query(,loc.first+,M)%MOD);
return ;
}

【Codeforces720D】Slalom 线段树 + 扫描线 (优化DP)的更多相关文章

  1. LOJ #2537. 「PKUWC 2018」Minimax (线段树合并 优化dp)

    题意 小 \(C\) 有一棵 \(n\) 个结点的有根树,根是 \(1\) 号结点,且每个结点最多有两个子结点. 定义结点 \(x\) 的权值为: 1.若 \(x\) 没有子结点,那么它的权值会在输入 ...

  2. UOJ#7. 【NOI2014】购票 | 线段树 凸包优化DP

    题目链接 UOJ #7 题解 首先这一定是DP!可以写出: \[f[i] = \min_{ancestor\ j} \{f[j] + (d[j] - d[i]) * p[i] + q[i]\}\] 其 ...

  3. 【学习笔记】线段树—扫描线补充 (IC_QQQ)

    [学习笔记]线段树-扫描线补充 (IC_QQQ) (感谢 \(IC\)_\(QQQ\) 大佬授以本内容的著作权.此人超然于世外,仅有 \(Luogu\) 账号 尚可膜拜) [学习笔记]线段树详解(全) ...

  4. Codeforces VK CUP 2015 D. Closest Equals(线段树+扫描线)

    题目链接:http://codeforces.com/contest/522/problem/D 题目大意:  给你一个长度为n的序列,然后有m次查询,每次查询输入一个区间[li,lj],对于每一个查 ...

  5. 【POJ-2482】Stars in your window 线段树 + 扫描线

    Stars in Your Window Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11706   Accepted:  ...

  6. HDU 4419 Colourful Rectangle --离散化+线段树扫描线

    题意: 有三种颜色的矩形n个,不同颜色的矩形重叠会生成不同的颜色,总共有R,G,B,RG,RB,GB,RGB 7种颜色,问7种颜色每种颜色的面积. 解法: 很容易想到线段树扫描线求矩形面积并,但是如何 ...

  7. BZOJ-3228 棋盘控制 线段树+扫描线+鬼畜毒瘤

    3228: [Sdoi2008]棋盘控制 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 23 Solved: 9 [Submit][Status][D ...

  8. BZOJ-3225 立方体覆盖 线段树+扫描线+乱搞

    看数据范围像是个暴力,而且理论复杂度似乎可行,然后被卡了两个点...然后来了个乱搞的线段树+扫描线.. 3225: [Sdoi2008]立方体覆盖 Time Limit: 2 Sec Memory L ...

  9. hdu 5091(线段树+扫描线)

    上海邀请赛的一道题目,看比赛时很多队伍水过去了,当时还想了好久却没有发现这题有什么水题的性质,原来是道成题. 最近学习了下线段树扫描线才发现确实是挺水的一道题. hdu5091 #include &l ...

随机推荐

  1. js实现动态操作table

     本章案例为通过js,动态操作table,实现在单页面进行增删改查的操作. 简要案例如下: <%@ page language="java" contentType=&quo ...

  2. Java暗箱操作之自动装箱与拆箱

    我以前在写Android项目的时候,估计写得最多最熟练的几句话就是: List<Integer> list = new ArrayList<Integer>(); list.a ...

  3. Guest Speaker on 2015 WinHEC Shenzhen 秋季大会

    继今年3月份的WinHEC春季大会,秋季大会于11月10日-11日深圳如期举行.此次大会的主题是Windows 10 IoT和Microsoft Azure,云和端的无缝连接是微软物联网解决方案的典型 ...

  4. nodejs 中自定义事件

    经常看到 req.on('error', function(){...}); 这种代码. 在nodejs中,可以使用 EventEmitter来实现. 具体的关键词有如下几个: var reqEven ...

  5. expdp 报The value (30) of MAXTRANS parameter ignored错误的原因诊断

    在使用expdp导出一个表的数据时遇到了下面情况,也不见其提示报错信息,一下子就执行完了,也没有导出我需要的数据 [oracle@getlnx01 dump_dir]$ expdp system/xx ...

  6. backup, file manipulation operations (such as ALTER DATABASE ADD FILE) and encryption changes on a database must be serialized.

    昨天在检查YourSQLDba备份时,发现有台数据库做备份时出现了下面错误信息,如下所示: <Exec>   <ctx>yMaint.ShrinkLog</ctx> ...

  7. WPF 显示文件列表中使用 ListBox 变到ListView 最后使用DataGrid

    WPF 显示文件列表中使用 ListBox 变到ListView 最后使用DataGrid 故事背景: 需要检索某目录下文件,并列出来,提供选择和其他功能. 第一版需求: 列出文件供选择即可,代码如下 ...

  8. docker

    docker pull centos docker images docker run -ti centos cat /etc/redhat-release ##################### ...

  9. [Django]登陆界面以及用户登入登出权限

    前言:简单的登陆界面展现,以及用户登陆登出,最后用户权限的问题 正文: 首先需要在settings.py设置ROOT_URLCONF,默认值为: ROOT_URLCONF  = 'www.urls'# ...

  10. 全面剖析 <input> 标签 ------ HTML\HTML5

    <input>标签因其形式多样.功能强大,当之无愧成为了WEB前端开发人员最钟爱的元素之一.下面就来对<input>做一个全面的剖析: 标签定义: <input> ...