http://poj.org/problem?id=1739 (题目链接)

题意

  给出一个n*m的地图,有些是障碍。问从左下角走遍所有非障碍格子一次且仅一次最终到达右下角的路径方案数。

Solution

  插头dp。

  我们给地图的再加上2行:

    .####.

    ......

  那么最后就变成了求一个回路了,思路参见cdq论文。

  UPD:并不是每种转移都需要重新求一遍最小表示法,但是那样写虽然常数略大,代码会整洁很多。虽然有强迫症,但是为了常数,还是把代码更新一下吧。

细节

  细节见代码。

代码

// poj1739
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<queue>
#define LL long long
#define MOD 4001
#define inf 2147483640
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
using namespace std; const int maxd=15,maxs=100010,maxh=4010;
int head[maxh],next[maxs];
int n,m,code[maxd],t[maxd],a[maxd][maxd],size[2],s[2][maxs];
char ch[maxd];
int tot[2][maxs]; void decode(int st) { //解码
for (int i=m;i>=0;i--) {
code[i]=st&7;
st>>=3;
}
}
int encode(int op) { //编码
int cnt=0;int st=0;
if (op) { //有时并不需要重新求最小表示法
memset(t,-1,sizeof(t));t[0]=0;
for (int i=0;i<=m;i++) {
if (t[code[i]]==-1) t[code[i]]=++cnt;
code[i]=t[code[i]];
}
}
for (int i=0;i<=m;i++) st=st<<3|code[i];
return st;
}
void shift() { //换行
for (int i=m;i;i--) code[i]=code[i-1];
code[0]=0;
}
void add(int op,int p,int num) { //更新hash表
int tmp=encode(op),id=tmp%MOD;
for (int i=head[id];i;i=next[i])
if (s[p][i]==tmp) {tot[p][i]+=num;return;}
next[++size[p]]=head[id];s[p][size[p]]=tmp;tot[p][size[p]]=num;
head[id]=size[p];
}
int main() {
while (scanf("%d%d",&n,&m)!=EOF && n && m) {
memset(a,0,sizeof(a));
for (int i=1;i<=n;i++) {
scanf("%s",ch+1);
for (int j=1;j<=m;j++) a[i][j]=ch[j]=='.';
}
a[n+1][1]=a[n+1][m]=1;
for (int i=1;i<=m;i++) a[n+2][i]=1;
n+=2; //加行
int ex=n,ey=m; //终止格显然是无障碍的 int p=0;
tot[0][1]=1;size[0]=1;s[0][1]=0;
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++) {
p^=1; //滚动
size[p]=0;
memset(head,0,sizeof(head)); //清空hash表
for (int k=1;k<=size[p^1];k++) {
decode(s[p^1][k]); //解码
int left=code[j-1],up=code[j]; //左插头,上插头
if (!a[i][j]) { //该格子为障碍格
code[j-1]=code[j]=0;
if (j==m) shift();
add(0,p,tot[p^1][k]);
continue;
}
if (left && up) { //左、上插头都存在,合并连通块
if (left==up) { //即将合并的两部分在同一个联通分量中
if (i==ex && j==ey) { //只能出现在最后一个格子
code[j]=code[j-1]=0;
if (j==m) shift();
add(0,p,tot[p^1][k]);
}
}
else { //不在同一个联通分量,合并
code[j-1]=code[j]=0;
for (int l=0;l<=m;l++) if (code[l]==left) code[l]=up;
if (j==m) shift();
add(1,p,tot[p^1][k]);
}
}
else if (left || up) { //左、上插头存在一个,连通块不变
int tmp;
if (left) tmp=left;
else tmp=up;
if (a[i][j+1]) { //插头插向右边的格子,这一步一定要先写,因为后面那步需要shift,会破坏code
code[j-1]=0;code[j]=tmp;
add(0,p,tot[p^1][k]);
}
if (a[i+1][j]) { //插头插向下边的格子
code[j-1]=tmp;code[j]=0;
if (j==m) shift();
add(0,p,tot[p^1][k]);
}
}
else { //左、上插头都不存在。新建连通块
if (a[i][j+1] && a[i+1][j]) {
code[j-1]=code[j]=10; //随意设一个一定不会与之前连通块重复的编号
add(1,p,tot[p^1][k]);
}
}
}
}
int ans=0;
for (int i=1;i<=size[p];i++) ans+=tot[p][i];
printf("%d\n",ans);
}
return 0;
}

  

【poj1739】 Tony's Tour的更多相关文章

  1. 【POJ】【1739】Tony's Tour

    插头DP 楼教主男人八题之一! 要求从左下角走到右下角的哈密顿路径数量. 啊嘞,我只会求哈密顿回路啊……这可怎么搞…… 容易想到:要是把起点和重点直接连上就变成一条回路了……那么我们就连一下~ 我们可 ...

  2. 【SPOJ】1825. Free tour II(点分治)

    http://www.spoj.com/problems/FTOUR2/ 先前看了一会题解就自己yy出来了...对拍过后交tle.................. 自己造了下大数据........t ...

  3. 【Codeforces858F】Wizard's Tour [构造]

    Wizard's Tour Time Limit: 50 Sec  Memory Limit: 512 MB Description Input Output Sample Input 4 5 1 2 ...

  4. 【读书笔记】A Swift Tour

    素材:A Swift Tour 推荐下载Playground:Download Playground objc 自己较为熟悉,想熟悉下风头正劲的 swift.就先从官方的入门手册开始撸. 每一小节,我 ...

  5. 【BZOJ3060】[Poi2012]Tour de Byteotia 并查集

    [BZOJ3060][Poi2012]Tour de Byteotia Description 给定一个n个点m条边的无向图,问最少删掉多少条边能使得编号小于等于k的点都不在环上. Input     ...

  6. 【CF1053E】Euler tour

    [CF1053E]Euler tour 题面 CF 洛谷 大概意思是你有一棵树,然而你并不知道这棵树是啥.给你一个确定了一些位置的欧拉序(就是\(ST\)表求\(LCA\)的那个序列),问你是否存在一 ...

  7. 【POJ】【1637】Sightseeing tour

    网络流/最大流 愚人节快乐XD 这题是给一个混合图(既有有向边又有无向边),让你判断是否有欧拉回路…… 我们知道如果一个[连通]图中每个节点都满足[入度=出度]那么就一定有欧拉回路…… 那么每条边都可 ...

  8. Python开发【前端】:JavaScript

    JavaScript入门 JavaScript一种直译式脚本语言,是一种动态类型.弱类型.基于原型的语言,内置支持类型.它的解释器被称为JavaScript引擎,为浏览器的一部分,广泛用于客户端的脚本 ...

  9. 【python】函数之内置函数

    Python基础 内置函数 今天来介绍一下Python解释器包含的一系列的内置函数,下面表格按字母顺序列出了内置函数: 下面就一一介绍一下内置函数的用法: 1.abs() 返回一个数值的绝对值,可以是 ...

随机推荐

  1. rails中的form_for

    1 form_for方法是ActionView::Helpers::FormHelper模块内的方法,所以可以在ActionView的实例中直接调用 2 from_for方法的原型为form_for( ...

  2. Ant :DataType

    DataType patternset fileset selector filelist path regexp Ant datatype Ant中,除了Property可以做为Task执行时使用的 ...

  3. String与int之间的转换

    原文: http://www.360doc.com/content/10/1215/00/2258566_78225883.shtml

  4. DbVisualizer连接hbase

    1.添加phoneix驱动 (1).点击Tools--->Driver Manager- (2).新建一个驱动,名称为phoenix(名称随意),选择phoenix的客户端驱动,驱动类如图所示 ...

  5. linux c++应用程序内存高或者占用CPU高的解决方案_20161213

    对于绝大多数实时程序来说,实时处理相关程序中的循环问题所带来的对机器的损耗和自身的处理速度的平衡,以及与其他程序的交互以及对其他功能的影响难免会成为程序设计中最大的障碍同时也是最大的突破点. 在所有这 ...

  6. Redis学习资源

    1 redis官方网站 http://redis.io/ 2 redis中文 http://redisdoc.com/ 3 redis的设计与实现 http://www.redisbook.com/ ...

  7. Android欢迎界面

    欢迎界面,最典型的表现: 1.是整个应用的启动界面: 2.没有标题栏: 3.几秒之后才进入主界面. 所以实现上面3点,一个最基本的欢迎界面就做出来了. 首先,新建一个Activity,命名为Splas ...

  8. JQuery判断元素是否存在

    JQuery判断元素是否存在的原理与javascript略有不同,因为$选择器选择的元素无论是否存在都不会返回null或undefined,要使用JQuery判断元素是否存在,只能使用length属性 ...

  9. C#基础-事件 继承类无法直接引发基类的事件

    An event can be raised only from the declaration space in which it is declared. Therefore, a class c ...

  10. Neutron 理解 (1): Neutron 所实现的虚拟化网络 [How Netruon Virtualizes Network]

    学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...