Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)
中英文混合输出是文本转语音(TTS)项目中很常见的需求场景,尤其在技术文章或者技术视频领域里,其中文文本中一定会夹杂着海量的英文单词,我们当然不希望AI口播只会念中文,Bert-vits2老版本(2.0以下版本)并不支持英文训练和推理,但更新了底模之后,V2.0以上版本支持了中英文混合推理(mix)模式。
还是以霉霉为例子:
https://www.bilibili.com/video/BV1bB4y1R7Nu/
截取霉霉说英文的30秒音频素材片段:
Bert-vits2英文素材处理
首先克隆项目:
git clone https://github.com/v3ucn/Bert-VITS2_V210.git
安装依赖:
pip3 install -r requirements.txt
将音频素材放入Data/meimei_en/raw目录中,这里en代表英文角色。
随后对素材进行切分:
python3 audio_slicer.py
随后对音频进行识别和重新采样:
python3 short_audio_transcribe.py
这里还是使用语音识别模型whisper,默认选择medium模型,如果显存不够可以针对short_audio_transcribe.py文件进行修改:
import whisper
import os
import json
import torchaudio
import argparse
import torch
from config import config
lang2token = {
'zh': "ZH|",
'ja': "JP|",
"en": "EN|",
}
def transcribe_one(audio_path):
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(audio_path)
audio = whisper.pad_or_trim(audio)
# make log-Mel spectrogram and move to the same device as the model
mel = whisper.log_mel_spectrogram(audio).to(model.device)
# detect the spoken language
_, probs = model.detect_language(mel)
print(f"Detected language: {max(probs, key=probs.get)}")
lang = max(probs, key=probs.get)
# decode the audio
options = whisper.DecodingOptions(beam_size=5)
result = whisper.decode(model, mel, options)
# print the recognized text
print(result.text)
return lang, result.text
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--languages", default="CJ")
parser.add_argument("--whisper_size", default="medium")
args = parser.parse_args()
if args.languages == "CJE":
lang2token = {
'zh': "ZH|",
'ja': "JP|",
"en": "EN|",
}
elif args.languages == "CJ":
lang2token = {
'zh': "ZH|",
'ja': "JP|",
}
elif args.languages == "C":
lang2token = {
'zh': "ZH|",
}
识别后的语音文件:
Data\meimei_en\raw/meimei_en/processed_0.wav|meimei_en|EN|But these were songs that didn't make it on the album.
Data\meimei_en\raw/meimei_en/processed_1.wav|meimei_en|EN|because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.
Data\meimei_en\raw/meimei_en/processed_2.wav|meimei_en|EN|and you always think back on these songs, and you're like.
Data\meimei_en\raw/meimei_en/processed_3.wav|meimei_en|EN|What would have happened? I wish people could hear this.
Data\meimei_en\raw/meimei_en/processed_4.wav|meimei_en|EN|but it belongs in that moment in time.
Data\meimei_en\raw/meimei_en/processed_5.wav|meimei_en|EN|So, now that I get to go back and revisit my old work,
Data\meimei_en\raw/meimei_en/processed_6.wav|meimei_en|EN|I've dug up those songs.
Data\meimei_en\raw/meimei_en/processed_7.wav|meimei_en|EN|from the crypt they were in.
Data\meimei_en\raw/meimei_en/processed_8.wav|meimei_en|EN|And I have like, I've reached out to artists that I love and said, do you want to?
Data\meimei_en\raw/meimei_en/processed_9.wav|meimei_en|EN|do you want to sing this with me? You know, Phoebe Bridgers is one of my favorite artists.
可以看到,每个切片都有对应的英文字符。
接着就是标注,以及bert模型文件生成:
python3 preprocess_text.py
python3 emo_gen.py
python3 spec_gen.py
python3 bert_gen.py
运行完毕后,查看英文训练集:
Data\meimei_en\raw/meimei_en/processed_3.wav|meimei_en|EN|What would have happened? I wish people could hear this.|_ w ah t w uh d hh ae V hh ae p ah n d ? ay w ih sh p iy p ah l k uh d hh ih r dh ih s . _|0 0 2 0 0 2 0 0 2 0 0 2 0 1 0 0 0 2 0 2 0 0 2 0 1 0 0 2 0 0 2 0 0 2 0 0 0|1 3 3 3 6 1 1 3 5 3 3 3 1 1
Data\meimei_en\raw/meimei_en/processed_6.wav|meimei_en|EN|I've dug up those songs.|_ ay V d ah g ah p dh ow z s ao ng z . _|0 2 0 0 2 0 2 0 0 2 0 0 2 0 0 0 0|1 1 1 0 3 2 3 4 1 1
Data\meimei_en\raw/meimei_en/processed_5.wav|meimei_en|EN|So, now that I get to go back and revisit my old work,|_ s ow , n aw dh ae t ay g eh t t uw g ow b ae k ae n d r iy V ih z ih t m ay ow l d w er k , _|0 0 2 0 0 2 0 2 0 2 0 2 0 0 2 0 2 0 2 0 2 0 0 0 1 0 2 0 1 0 0 2 2 0 0 0 2 0 0 0|1 2 1 2 3 1 3 2 2 3 3 7 2 3 3 1 1
Data\meimei_en\raw/meimei_en/processed_1.wav|meimei_en|EN|because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.|_ b ih k ao z ay w aa n t ah d t uw s ey V dh eh m f ao r dh ah n eh k s t ae l b ah m . ae n d dh eh n ih t t er n d aw t dh ah n eh k s t ae l b ah m w aa z l ay k ah hh ow l d ih f er ah n t th ih ng . ae n d s ow dh ey g eh t l eh f t b ih hh ay n d . _|0 0 1 0 2 0 2 0 2 0 0 1 0 0 2 0 2 0 0 2 0 0 2 0 0 1 0 2 0 0 0 2 0 0 1 0 0 2 0 0 0 2 0 2 0 0 2 0 0 2 0 0 1 0 2 0 0 0 2 0 0 1 0 0 2 0 0 2 0 1 0 2 0 0 2 0 1 1 0 0 0 2 0 0 2 0 0 0 2 0 2 0 2 0 0 2 0 0 0 1 0 2 0 0 0 0|1 5 1 6 2 3 3 3 2 5 5 1 3 3 2 4 2 2 5 5 3 3 1 3 7 3 1 3 2 2 3 4 6 1 1
Data\meimei_en\raw/meimei_en/processed_2.wav|meimei_en|EN|and you always think back on these songs, and you're like.|_ ae n d y uw ao l w ey z th ih ng k b ae k aa n dh iy z s ao ng z , ae n d y uh r l ay k . _|0 2 0 0 0 2 2 0 0 3 0 0 2 0 0 0 2 0 2 0 0 2 0 0 2 0 0 0 2 0 0 0 2 0 0 2 0 0 0|1 3 2 5 4 3 2 3 4 1 3 1 1 1 3 1 1
至此,英文数据集就处理好了。
Bert-vits2英文模型训练
随后运行训练文件:
python3 train_ms.py
就可以在本地训练英文模型了。
这里需要注意的是,中文模型和英文模型通常需要分别进行训练,换句话说,不能把英文训练集和中文训练集混合着进行训练。
中文和英文在语言结构、词汇和语法等方面存在显著差异。中文采用汉字作为基本单元,而英文使用字母作为基本单元。中文的句子结构和语序也与英文有所不同。因此,中文模型和英文模型在学习语言特征和模式时需要不同的处理方式和模型架构。
中英文文本数据的编码方式不同。中文通常使用Unicode编码,而英文使用ASCII或Unicode编码。这导致了中文和英文文本数据的表示方式存在差异。在混合训练时,中英文文本数据的编码和处理方式需要统一,否则会导致模型训练过程中的不一致性和错误。
所以,Bert-vits2所谓的Mix模式也仅仅指的是推理,而非训练,当然,虽然没法混合数据集进行训练,但是开多进程进行中文和英文模型的并发训练还是可以的。
Bert-vits2中英文模型混合推理
英文模型训练完成后(所谓的训练完成,往往是先跑个50步看看效果),将中文模型也放入Data目录,关于中文模型的训练,请移步:本地训练,立等可取,30秒音频素材复刻霉霉讲中文音色基于Bert-VITS2V2.0.2,囿于篇幅,这里不再赘述。
模型结构如下:
E:\work\Bert-VITS2-v21_demo\Data>tree /f
Folder PATH listing for volume myssd
Volume serial number is 7CE3-15AE
E:.
├───meimei_cn
│ │ config.json
│ │ config.yml
│ │
│ ├───filelists
│ │ cleaned.list
│ │ short_character_anno.list
│ │ train.list
│ │ val.list
│ │
│ ├───models
│ │ G_50.pth
│ │
│ └───raw
│ └───meimei
│ meimei_0.wav
│ meimei_1.wav
│ meimei_2.wav
│ meimei_3.wav
│ meimei_4.wav
│ meimei_5.wav
│ meimei_6.wav
│ meimei_7.wav
│ meimei_8.wav
│ meimei_9.wav
│ processed_0.bert.pt
│ processed_0.emo.npy
│ processed_0.spec.pt
│ processed_0.wav
│ processed_1.bert.pt
│ processed_1.emo.npy
│ processed_1.spec.pt
│ processed_1.wav
│ processed_2.bert.pt
│ processed_2.emo.npy
│ processed_2.spec.pt
│ processed_2.wav
│ processed_3.bert.pt
│ processed_3.emo.npy
│ processed_3.spec.pt
│ processed_3.wav
│ processed_4.bert.pt
│ processed_4.emo.npy
│ processed_4.spec.pt
│ processed_4.wav
│ processed_5.bert.pt
│ processed_5.emo.npy
│ processed_5.spec.pt
│ processed_5.wav
│ processed_6.bert.pt
│ processed_6.emo.npy
│ processed_6.spec.pt
│ processed_6.wav
│ processed_7.bert.pt
│ processed_7.emo.npy
│ processed_7.spec.pt
│ processed_7.wav
│ processed_8.bert.pt
│ processed_8.emo.npy
│ processed_8.spec.pt
│ processed_8.wav
│ processed_9.bert.pt
│ processed_9.emo.npy
│ processed_9.spec.pt
│ processed_9.wav
│
└───meimei_en
│ config.json
│ config.yml
│
├───filelists
│ cleaned.list
│ short_character_anno.list
│ train.list
│ val.list
│
├───models
│ │ DUR_0.pth
│ │ DUR_50.pth
│ │ D_0.pth
│ │ D_50.pth
│ │ events.out.tfevents.1701484053.ly.16484.0
│ │ events.out.tfevents.1701620324.ly.10636.0
│ │ G_0.pth
│ │ G_50.pth
│ │ train.log
│ │
│ └───eval
│ events.out.tfevents.1701484053.ly.16484.1
│ events.out.tfevents.1701620324.ly.10636.1
│
└───raw
└───meimei_en
meimei_en_0.wav
meimei_en_1.wav
meimei_en_2.wav
meimei_en_3.wav
meimei_en_4.wav
meimei_en_5.wav
meimei_en_6.wav
meimei_en_7.wav
meimei_en_8.wav
meimei_en_9.wav
processed_0.bert.pt
processed_0.emo.npy
processed_0.wav
processed_1.bert.pt
processed_1.emo.npy
processed_1.spec.pt
processed_1.wav
processed_2.bert.pt
processed_2.emo.npy
processed_2.spec.pt
processed_2.wav
processed_3.bert.pt
processed_3.emo.npy
processed_3.spec.pt
processed_3.wav
processed_4.bert.pt
processed_4.emo.npy
processed_4.wav
processed_5.bert.pt
processed_5.emo.npy
processed_5.spec.pt
processed_5.wav
processed_6.bert.pt
processed_6.emo.npy
processed_6.spec.pt
processed_6.wav
processed_7.bert.pt
processed_7.emo.npy
processed_7.wav
processed_8.bert.pt
processed_8.emo.npy
processed_8.wav
processed_9.bert.pt
processed_9.emo.npy
processed_9.wav
这里meimei_cn代表中文角色模型,meimei_en代表英文角色模型,分别都只训练了50步。
启动推理服务:
python3 webui.py
访问http://127.0.0.1:7860/,在文本框中输入:
[meimei_cn]<zh>但这些歌曲没进入专辑因为想留着他们下一张专辑用,然後下一張專輯完全不同所以他們被拋在了後面
[meimei_en]<en>But these were songs that didn't make it on the album.
because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.
随后将语言设置为mix。
这里通过[角色]和<语言>对文本进行标识,让系统选择对应的中文或者英文模型进行并发推理:
如果本地只有一个英文模型和一个中文模型,也可以选择auto模型,进行自动中英文混合推理:
但这些歌曲没进入专辑因为想留着他们下一张专辑用,然後下一張專輯完全不同所以他們被拋在了後面
But these were songs that didn't make it on the album.
because I wanted to save them for the next album. And then it turned out the next album was like a whole different thing. And so they get left behind.
系统会自动侦测文本语言从而选择对应模型进行推理。
结语
在技术文章翻译转口播或者视频、跨语言信息检索等任务中需要处理中英文之间的转换和对齐,通过Bert-vits2中英文混合推理,可以更有效地处理这些任务,并提供更准确和连贯的结果,Bert-vits2中英文混合推理整合包地址如下:
https://pan.baidu.com/s/1iaC7f1GPXevDrDMCRCs8uQ?pwd=v3uc
Bert-vits2新版本V2.1英文模型本地训练以及中英文混合推理(mix)的更多相关文章
- BERT总结:最先进的NLP预训练技术
BERT(Bidirectional Encoder Representations from Transformers)是谷歌AI研究人员最近发表的一篇论文:BERT: Pre-training o ...
- [转]PHP判断字符串是纯英文、纯汉字或汉英混合(GBK)
PHP判断字符串是否为中文(或英文)的方法,除了正则表达式判断和拆分字符判断字符的值是否小于128 外还有一种比较特别的方法. 使用php中的mb_strlen和strlen函数判断 方法比较简单:分 ...
- DeepFaceLab 模型预训练参数Pretrain的使用!
Pretrain参数是20190501版本才加入的参数,作者加入这个参数的目的应该是提升模型的训练速度和增强适应性.具体有哪些提升,需要大家去摸索,我这里分享一下自己的使用过程. 这个参数仅针对S ...
- label studio 结合 MMDetection 实现数据集自动标记、模型迭代训练的闭环
前言 一个 AI 方向的朋友因为标数据集发了篇 SCI 论文,看着他标了两个多月的数据集这么辛苦,就想着人工智能都能站在围棋巅峰了,难道不能动动小手为自己标数据吗?查了一下还真有一些能够满足此需求的框 ...
- Amaze UI 发布基于jQuery新版本v2.0.0之web组件
首先Amaze Ui第一版时我收到邮件邀请去试用,去了官网看了下,是基于zepto.js的一个类似bootstrap的响应式框架,提到框架当然是好事,快速开发呗.这词2.0的弃用zepto.js改用j ...
- 学习笔记TF016:CNN实现、数据集、TFRecord、加载图像、模型、训练、调试
AlexNet(Alex Krizhevsky,ILSVRC2012冠军)适合做图像分类.层自左向右.自上向下读取,关联层分为一组,高度.宽度减小,深度增加.深度增加减少网络计算量. 训练模型数据集 ...
- 深度学习原理与框架-卷积神经网络-cifar10分类(图片分类代码) 1.数据读入 2.模型构建 3.模型参数训练
卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码 ...
- Keras保存模型并载入模型继续训练
我们以MNIST手写数字识别为例 import numpy as np from keras.datasets import mnist from keras.utils import np_util ...
- pycharm+keras+yolo3的使用和自选模型的训练中遇到的坑
1.TensorFlow版本的问题 报错:RuntimeError: `get_session` is not available when using TensorFlow 2.0. 解决办法:这个 ...
- Keras函数——keras.callbacks.ModelCheckpoint()及模型的训练
keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False, save_ ...
随机推荐
- Redhat 8.2 系统语言切换(英文转中文)
前提条件 确保已连上网,并且配好 yum 源 若未配好 yum 源 可参考我上一篇文章 部分 Linux 换国内源 操作步骤 安装中文语言包 dnf install glibc-langpack-zh ...
- Qt安卓开发经验技巧总结V202308
01:01-05 pro中引入安卓拓展模块 QT += androidextras . pro中指定安卓打包目录 ANDROID_PACKAGE_SOURCE_DIR = $$PWD/android ...
- 03.前后端分离中台框架 zhontai 项目代码生成器的使用
zhontai 项目 基于 .Net7.x + Vue 等技术的前后端分离后台权限管理系统,想你所想的开发理念,希望减少工作量,帮助大家实现快速开发 后端地址:https://github.com/z ...
- 魔术方法__getitem__
Python中的魔术方法_getitem_ python中有许多的魔术方法,下文主要对_getitem_()进行介绍.__ 在python中_getitem_(self, key):方法被称为魔法方法 ...
- .NET周刊【8月第3期 2023-08-20】
国内主题 抓的是周树人,与我鲁迅有什么关系? https://www.cnblogs.com/JulianHuang/p/17642511.html 问题:作者看到了一个关于Dictionary.Cl ...
- MindSponge分子动力学模拟——计算单点能(2023.08)
技术背景 在前面的几篇文章中,我们分别介绍了MindSponge的软件架构.MindSponge的安装与使用和如何在MindSponge中定义一个分子系统.那么就像深度学习中的损失函数,或者目标函数, ...
- 初级线段树 POJ3264
Balanced Lineup Description For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line ...
- 在Vue2和Vue3中JSX的使用集锦
Vue2安装JSX支持 有时候,我们使用渲染函数(render function)来抽象组件,而渲染函数使用Vue的h函数来编写Dom元素相对template语法差别较大,体验不佳,这个时候就派 JS ...
- mpi转以太网连接300PLC在气动系统中的应用
mpi转以太网连接300PLC在气动系统中的应用 某企业装备有限公司 摘要 工业通讯迅速发展的今天,MPI转以太网通讯已经发展为成熟,稳定,高效通讯 方式,兴达易控自主研发的MPI转以太网模块MPI- ...
- 堆的原理以及实现O(lgn)
大家好,我是蓝胖子,我一直相信编程是一门实践性的技术,其中算法也不例外,初学者可能往往对它可望而不可及,觉得很难,学了又忘,忘其实是由于没有真正搞懂算法的应用场景,所以我准备出一个系列,囊括我们在日常 ...