题目

给定三个整数\(a,b,c\),问是否能找到两个数\(x,y\)使得\(ax+by+c=0\),没有则输出-1


分析

先把式子转换成\(ax+by=-c\)

然后\(x,y\)是整数当且仅当\(ax+by=gcd(a,b)\)

那么\(gcd(a,b)|-c\)

通过扩欧算出\(ax+by=gcd(a,b)\)的情况

如果\(gcd(a,b)\)不是\(-c\)的约数,那么方程无解

否则将\(x,y\)分别扩大\(-\frac{c}{gcd(a,b)}\)倍即为答案


代码

#include <cstdio>
#define rr register
using namespace std;
int a,b,c,gcd,x,y; long long xx,yy;
inline signed exgcd(int a,int b,int &x,int &y){
if (!b) {
x=1,y=0;
return a;
}else{
rr int now=exgcd(b,a%b,y,x);
y-=a/b*x;
return now;
}
}
signed main(){
scanf("%d%d%d",&a,&b,&c),c=-c;
gcd=exgcd(a,b,x,y);
if (c%gcd) return !printf("-1");
xx=1ll*x*(c/gcd),yy=1ll*y*(c/gcd);
return !printf("%lld %lld",xx,yy);
}

#裴蜀定理#CF7C Line的更多相关文章

  1. 【BZOJ-2299】向量 裴蜀定理 + 最大公约数

    2299: [HAOI2011]向量 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1118  Solved: 488[Submit][Status] ...

  2. 【BZOJ-1441】Min 裴蜀定理 + 最大公约数

    1441: Min Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 471  Solved: 314[Submit][Status][Discuss] De ...

  3. BZOJ-2257 瓶子和燃料 分解因数+数论方面乱搞(裴蜀定理)

    一开始真没想出解法...后来发现那么水.... 2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec Memory Limit: 128 MB Submit: 970 So ...

  4. 【BZOJ】1441: Min(裴蜀定理)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1441 这东西竟然还有个名词叫裴蜀定理................ 裸题不说....<初等数 ...

  5. BZOJ 2257: [Jsoi2009]瓶子和燃料 裴蜀定理

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/p ...

  6. BZOJ 2257: [Jsoi2009]瓶子和燃料【数论:裴蜀定理】

    2257: [Jsoi2009]瓶子和燃料 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1326  Solved: 815[Submit][Stat ...

  7. 【Wannafly挑战赛22A计数器】【裴蜀定理】

    https://www.nowcoder.com/acm/contest/160/A 题目描述 有一个计数器,计数器的初始值为0,每次操作你可以把计数器的值加上a1,a2,...,an中的任意一个整数 ...

  8. [BZOJ 2299][HAOI 2011]向量 题解(裴蜀定理)

    [BZOJ 2299][HAOI 2011]向量 Description 给你一对数a,b,你可以任意使用(a,b), (a,-b), (-a,b), (-a,-b), (b,a), (b,-a), ...

  9. hdu 6444 网络赛 Neko's loop(单调队列 + 裴蜀定理)题解

    题意:有编号为0~n-1的n个游戏,每个活动都有一个价值(可为负),给你m,s和k,你可以从任意一个编号开始玩,但是下一个游戏必须是编号为(i + k)%n的游戏,你最多能玩m次游戏,问你如果最后你手 ...

  10. 【裴蜀定理】【CF1091C】 New Year and the Sphere Transmission

    Description 有 \(n\) 个人围成一个圈,按照顺时针从 \(1\) 到 \(n\) 编号.第 \(1\) 个人会拿到一个球,他指定一个数字 \(k\),然后会将球传给他后面顺指针数第 \ ...

随机推荐

  1. React native随笔——解决navigation导航栏 android和ios样式不统一

    navigation导航栏存在android和ios样式不统一的问题.Android手机上标题不居中,导航栏与状态栏重合. 解决方法为在navigationOptions中进行如下配置. 一.Andr ...

  2. RK3588开发笔记(一):基于方案商提供的宿主机交叉编译Qt5.12.10

    前言   rk3588开发车机,方案上提供的宿主机只是编译rk sdk的版本,并未编译好Qt,那么需要自行交叉编译Qt系统.选择的Qt的版本为5.12.10.   宿主机准备   下载并打开宿主机,只 ...

  3. Redis项目常见解决方案

    ## 1. 缓存预热 在项目启动,或者服务器重启后, 因为请求量较大, 此时对关系型数据库的访问量就有可能超标,导致服务卡顿,宕机, 所以在启动前应该对缓存进行预热: 前置准备工作: 日常例行统计数据 ...

  4. Java对象引用和内存管理的细节

    在Java中,当局部变量(比如方法参数)的作用域结束时,这个局部变量的引用确实不再存在,但这并不意味着它引用的对象会被销毁.对象的销毁是由Java的垃圾回收器(Garbage Collector, G ...

  5. 使用Kubernetes搭建带有ik分词的Elasticsearch集群

    创建好带有Ik分词的es镜像,并上传到镜像仓库中,创建镜像可参考链接中的文档 https://www.cnblogs.com/hi-lijq/p/16895206.html 编写es_cluster- ...

  6. 2022年RPA行业发展十大趋势,六千字长文助你看懂RPA

    2022年RPA行业发展十大趋势,六千字长文助你看懂RPA 2022年RPA行业如何发展?十大趋势助你看懂RPA行业未来 这里有2022年RPA行业发展的十大趋势,关注RPA的朋友定要收藏! 文/王吉 ...

  7. Toyota Programming Contest 2024#2(AtCoder Beginner Contest 341)D - Only one of two(数论、二分)

    目录 链接 题面 题意 题解 代码 总结 链接 D - Only one of two 题面 题意 求第\(k\)个只能被\(N\)或\(M\)整除的数 题解 \([1,x]\)中的能被\(n\)整除 ...

  8. 解密prompt系列26. 人类思考vs模型思考:抽象和发散思维

    在Chain of Thought出来后,出现过许多的优化方案例如Tree of thought, Graph of Thought, Algorithm of Thought等等,不过这些优化的出发 ...

  9. java项目-尚硅谷项目三员工调度系统

    导入工具类和数据 创建TeamSchedule项目,com.atguigu.team. view,com.atguigu.team.service,com.atguigu.team.domain包 , ...

  10. 一文搞懂Vue的MVVM模式与双向绑定

    v-model 是 Vue.js 框架中用于实现双向数据绑定的指令.它充分体现了 MVVM(Model-View-ViewModel)模式中的双向数据绑定特性.下面我们将详细解释 v-model 如何 ...