[ABC272G] Yet Another mod M
Problem Statement
You are given a sequence $A=(A_1,A_2,\dots,A_N)$ of length $N$ consisting of positive integers, where the elements of $A$ are distinct.
You will choose a positive integer $M$ between $3$ and $10^9$ (inclusive) to perform the following operation once:
- For each integer $i$ such that $1 \le i \le N$, replace $A_i$ with $A_i \bmod M$.
Can you choose an $M$ so that $A$ satisfies the following condition after the operation? If you can, find such an $M$.
- There exists an integer $x$ such that $x$ is the majority in $A$.
Here, an integer $x$ is said to be the majority in $A$ if the number of integers $i$ such that $A_i = x$ is greater than the number of integers $i$ such that $A_i \neq x$.
Constraints
- $3 \le N \le 5000$
- $1 \le A_i \le 10^9$
- The elements of $A$ are distinct.
- All values in the input are integers.
Input
The input is given from Standard Input in the following format:
$N$
$A_1$ $A_2$ $\dots$ $A_N$
Output
If there exists an $M$ that satisfies the condition, print such an $M$. Otherwise, print $-1$.
Sample Input 1
5
3 17 8 14 10
Sample Output 1
7
If you let $M=7$ to perform the operation, you will have $A=(3,3,1,0,3)$, where $3$ is the majority in $A$, so $M=7$ satisfies the condition.
Sample Input 2
10
822848257 553915718 220834133 692082894 567771297 176423255 25919724 849988238 85134228 235637759
Sample Output 2
37
Sample Input 3
10
1 2 3 4 5 6 7 8 9 10
Sample Output 3
-1
首先如果现在就给出一些模某个数同余的数,怎么知道模哪个数同余?设这些数是 \(a_1,a_2\cdots a_k\),那么两个同余的数一减,一定模的那个数的倍数。所以这些数模 \(\gcd(|a_2-a_1|,|a_3-a_2|,\cdots ,|a_k-a_{k-1}|)\) 一定是同余的,看这个数是否大于2即可。
第二个引理,如果某个数合法,那么他的因数一定合法。这应该是易得的。所以后面的讨论中,我们可以只讨论质数(4也要特殊讨论,由于2被排除在范围外)。
首先对于所有小于等于 \(\sqrt{W}\)(\(W\) 是值域) 的质数,我们可以先跑一次。这里的复杂度不会超过 \(O(\frac{n\sqrt{W}}{\log n})\)。
对于大于 \(\sqrt{W}\) 的质数,应该注意到,如果他合法,那么他选出来的子集中每两个数之差一定都是他的因数。由于选的时候选了超过 \(\lceil\frac n2\rceil\) 个数,所以一定选了原序列中的相邻两个数(除非 \(n\) 为奇数然后跳着选,这个特判一下就好了)。大于 \(\sqrt{W}\) 的质数,在某个数中的所有质因数中至多出现一个。枚举序列的相邻两个数,找到他们的差中那个大于 \(\sqrt{W}\) 的质因数(如果存在的话),然后跑一次看是否合法。分解质因数这里由于我们已经筛出来了小于等于 \(\sqrt{W}\) 的所有质因数,所以可以降到 \(O(\frac{\sqrt{W}}{\log n})\)。注意这里取模加计数要用到哈希表。总复杂度 \(O(\frac{n\sqrt{W}}{\log n})\)
#include<bits/stdc++.h>
using namespace std;
const int N=5005,M=40000,P=5521;
int n,a[N],mx,pri[M],c,p[M],m;
struct hashmap{
int cnt[P],hd[P],idx,nxt[P],val[P];
int insert(int x)
{
if(!hd[x%P])
{
hd[x%P]=++idx;
val[idx]=x;
return ++cnt[idx];
}
for(int i=hd[x%P];i;i=nxt[i])
{
if(val[i]==x)
{
cnt[i]++;
return cnt[i];
}
else if(!nxt[i])
{
nxt[i]=++idx;
val[idx]=x;
cnt[idx]=1;
return 1;
}
}
}
void clear()
{
memset(hd,idx=0,sizeof(hd));
memset(nxt,0,sizeof(nxt));
memset(cnt,0,sizeof(cnt));
}
}cnt;
void check(int i)
{
cnt.clear();
mx=0;
for(int j=1;j<=n;j++)
{
int k=cnt.insert(a[j]%i);
// printf("%d ",a[j]%i);
if(k>mx)
mx=k;
}
// printf("%d\n",mx);
if(mx>n/2)
{
printf("%d\n",i);
exit(0);
}
}
void maxdiv(int x)
{
for(int i=1;i<=m;i++)
while(x%p[i]==0)
x/=p[i];
if(x!=1)
check(x);
}
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%d",a+i);
sort(a+1,a+n+1);
for(int i=2;i<=32000;i++)
{
if(!pri[i])
{
p[++m]=i;
for(int j=i;j*i<=32000;j++)
pri[j*i]=1;
}
}
check(4);
for(int i=3;i<=32000;i++)
if(!pri[i])
check(i);
maxdiv(a[3]-a[1]);
for(int i=1;i<=n;i++)
maxdiv(a[i+1]-a[i]);
puts("-1");
}
[ABC272G] Yet Another mod M的更多相关文章
- 函数mod(a,m)
Matlab中的函数mod(a,m)的作用: 取余数 例如: mod(25,5)=0; mod(25,10)=5; 仅此.
- ORACLE 数据库 MOD 函数用法
1.求2和1的余数. Select mod(2,1) from dual: 2能被1整除所以余数为0. 2.MOD(x,y)返回X除以Y的余数.如果Y是0,则返回X的值. Select mod(2,0 ...
- 黑科技项目:英雄无敌III Mod <<Fallen Angel>>介绍
英雄无敌三简介(Heroes of Might and Magic III) 英3是1999年由New World Computing在Windows平台上开发的回合制策略魔幻游戏,其出版商是3DO. ...
- [日常训练]mod
Description 给定$p_1,p_2,-,p_n,b_1,b_2,...,b_m$, 求满足$x\;mod\;p_1\;\equiv\;a_1,x\;mod\;p_2\;\equiv\;a_2 ...
- Apache Mod/Filter Development
catalog . 引言 . windows下开发apache模块 . mod进阶: 接收客户端数据的 echo 模块 . mod进阶: 可配置的 echo 模块 . mod进阶: 过滤器 0. 引言 ...
- FZU 1752 A^B mod C(快速加、快速幂)
题目链接: 传送门 A^B mod C Time Limit: 1000MS Memory Limit: 65536K 思路 快速加和快速幂同时运用,在快速加的时候由于取模耗费不少时间TLE了 ...
- HDOJ 4389 X mod f(x)
数位DP........ X mod f(x) Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/ ...
- hdu.1104.Remainder(mod && ‘%’ 的区别 && 数论(k*m))
Remainder Time Limit: 6000/3000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
- 对于一个负数mod正数
鸟神说.. a/b靠零取整 然后呢..a%b定义成a-(a/b)*b c语言就是这么算的... 那么python2.6是怎么算的呢 如果最后你取模想得到一个正数.. 那么在上述取模定义不变的情况下 p ...
- 51Nod 1046 A^B Mod C Label:快速幂
给出3个正整数A B C,求A^B Mod C. 例如,3 5 8,3^5 Mod 8 = 3. Input 3个正整数A B C,中间用空格分隔.(1 <= A,B,C <= 10^ ...
随机推荐
- ffmpeg 在xp和server2003/2008/2012上修复无法定位GetNumaNodeProcessorMaskEx的问题
问题 在给开发一个手机视频网站时需要用到ffmpeg截取视频缩略图, 把项目提交到服务器(server2003/ server2008)上时, 发现在调用命令时会出现错误"无法定位GetNu ...
- 让你的HpSocket Pull支持同步(应答式)操作
什么是HPSocket HP-Socket 是一套通用的高性能 TCP/UDP 通信框架,包含服务端组件.客户端组件和Agent组件,广泛适用于各种不同应用场景的 TCP/UDP 通信系统,提供 C/ ...
- DevSecOps之应用安全测试工具及选型
上篇文章,有同学私信想了解有哪些DevSecOps工具,这里整理出来,供大家参考(PS: 非专业安全人士,仅从DevOps建设角度,给出自己见解) 软件中的漏洞和弱点很常见:84%的软件漏洞都是利用应 ...
- WASI support in Go
原文在这里. 由 Johan Brandhorst-Satzkorn, Julien Fabre, Damian Gryski, Evan Phoenix, and Achille Roussel 发 ...
- JAVA动态增强一个BaseController的已经存在的接口
使用场景 前提场景 我们多个系统同时继承了某一个通用系统,通用系统的接口是不会允许随意改变的,其他子系统都依赖于Base系统的通用接口 目标需求场景 但是有一个业务,需要给某一个公共接口增加子系统独有 ...
- 基于TRE文章的非线性模型化线性方法
之前写过一篇有关TRE优化模型详解的博文: https://www.cnblogs.com/zoubilin/p/17270435.html 这篇文章里面的附录给出了非线性模型化线性的方式,具体内容如 ...
- Python基础——数字类型int与float、字符串、列表、元组、字典、集合、可变类型与不可变类型、数据类型总结
文章目录 一 引子 二 数字类型int与float 2.1 定义 2.2 类型转换 2.3 使用 三 字符串 3.1 定义: 3.2 类型转换 3.3 使用 3.3.1 优先掌握的操作 3.3.2 需 ...
- Top 5 Code Smells Newbies Developers Could Easily Identify & Avoid
Posted by Ajitesh Kumar / In Freshers, Software Quality / February 1, 2014 Following is one very pop ...
- Caused by: liquibase.exception.ValidationFailedException: Validation Failed:1 change sets check sum
db/changelog/mysql/changelog-0001-307096-1.0.sql::1.0::buoluo.meng was: 8:a5d8f616a121230c204fd2b878 ...
- for遍历
for遍历 一:常规方式 1.遍历数组 int arr[10] = {1,2,3,4,5,6,7,8,9,10}; for(int i = 0;i<10;i++) { cout<<a ...