根据MongoDB的文档描述,在MongoDB的聚合操作中,有以下五个聚合命令。

其中,count、distinct和group会提供很基本的功能,至于其他的高级聚合功能(sum、average、max、min),就需要通过mapReduce来实现了。

在MongoDB2.2版本以后,引入了新的聚合框架(聚合管道,aggregation pipeline ,使用aggregate命令),是一种基于管道概念的数据聚合操作。

Name

Description

count

Counts the number of documents in a collection.

distinct

Displays the distinct values found for a specified key in a collection.

group

Groups documents in a collection by the specified key and performs simple aggregation.

mapReduce

Performs map-reduce aggregation for large data sets.

aggregate

Performs aggregation tasks such as group using the aggregation framework.

下面就开始对这些聚合操作进行介绍,所有的测试数据都是基于上一篇文章。

count

首先,我们看下MongoDB文档中,count命令可以支持的选项:

 { count: <collection>, query: <query>, limit: <limit>, skip: <skip>, hint: <hint> }
  • count:要执行count的collection
  • query(optional):过滤条件
  • limit(optional):查询匹配文档数量的上限
  • skip(optional):跳过匹配文档的数量
  • hint(optional):使用那个索引

例子:查看男学生的数量

 > db.runCommand({"count":"school.students", "query":{"gender":"Male"}})
{ "n" : , "ok" : }
>

在MongoDB中,对count操作有一层包装,所以也可以通过shell直接运行db."collectionName".count()。

但是为了保持风格一致,我还是倾向于使用db.runCommand()的方式。

distinct

接下来看看distinct命令,下面列出可以支持的选项:

 { distinct: "<collection>", key: "<field>", query: <query> }
  • distinct:要执行distinct的collection
  • key:要执行distinct的键
  • query(optional):过滤条件

例子:查看所有学生年龄的不同值

 > db.runCommand({"distinct":"school.students","key":"age"})
{
"values" : [
,
,
,
, ],
"stats" : {
"n" : ,
"nscanned" : ,
"nscannedObjects" : ,
"timems" : ,
"cursor" : "BtreeCursor age_1"
},
"ok" :
}

group

group命令相比前两就稍微复杂了一些。

 {
group:
{
ns: <namespace>,
key: <key>,
$reduce: <reduce function>,
initial:
$keyf: <key function>,
cond: <query>,
finalize: <finalize function>
}
}
  • ns:要执行group的collection
  • key:要执行group的键,可以是多个键;和keyf两者必须有一个
  • $reduce:在group操作中要执行的聚合function,该function包括两个参数,当前文档和聚合结果文档
  • initial:reduce中使用变量的初始化
  • $keyf(optional):可以接受一个function,用来动态的确定分组文档的字段
  • cond(optional):过滤条件
  • finalize(optional):在reduce执行完成,结果集返回之前对结果集最终执行的函数

例子:统计不同年龄、性别分组的学生数量

 > db.runCommand({
... "group":{
... "ns":"school.students",
... "key":{"age":true, "gender":true},
... "initial":{"count":},
... "$reduce": function(cur, result){ result.count++;},
... "cond":{"age":{"$lte":}}
... }
... })
{
"retval" : [
{
"age" : ,
"gender" : "Female",
"count" :
},
{
"age" : ,
"gender" : "Male",
"count" :
},
{
"age" : ,
"gender" : "Male",
"count" :
},
{
"age" : ,
"gender" : "Female",
"count" :
}
],
"count" : ,
"keys" : ,
"ok" :
}
>

通过finalize选项,可以在结果返回之前进行一些自定义设置。

 > db.runCommand({
... "group":{
... "ns":"school.students",
... "key":{"age":true, "gender":true},
... "initial":{"count":},
... "$reduce": function(cur, result){
... result.count++;
... },
... "cond":{"age":{"$lte":}},
... "finalize": function(result){
... result.percentage = result.count/;
... delete result.count;
... }
... }
... })
{
"retval" : [
{
"age" : ,
"gender" : "Female",
"percentage" : 0.2
},
{
"age" : ,
"gender" : "Male",
"percentage" : 0.1
},
{
"age" : ,
"gender" : "Male",
"percentage" : 0.2
},
{
"age" : ,
"gender" : "Female",
"percentage" : 0.1
}
],
"count" : ,
"keys" : ,
"ok" :
}
>

mapReduce

前面三个聚合操作提供了最基本的功能,如果要用到更加复杂的聚合操作,我们就需要自己通过mapReduce来实现了。

mapReduce更重要的用法是实现多个服务器上的聚合操作。

根据MongoDB文档,得到mapReduce的原型如下:

 {
mapReduce: <collection>,
map: <function>,
reduce: <function>,
out: <output>,
query(optional): <document>,
sort(optional): <document>,
limit(optional): <number>,
finalize(optional): <function>,
scope(optional): <document>,
jsMode(optional): <boolean>,
verbose(optional): <boolean>
}
  • mapReduce:要执行map-reduce操作的collection
  • map:map function,生成键/值对,可以理解为映射函数
  • reduce:reduce function,对map的结果进行统计,可以理解为统计函数
  • out:统计结果存放集合 (不指定则使用临时集合,在客户端断开后自动删除)
  • query:过滤条件
  • sort:排序条件
  • limit:map函数可以接受的文档数量的最大值
  • finalize:在reduce执行完成后,结果集返回之前对结果集最终执行的函数
  • scope:向 map、reduce、finalize 导入外部变量
  • jsMode:设置是否把map和reduce的中间数据转换成BSON格式
  • verbose:设置是否显示详细的时间统计信息

注意:map、reduce和finalize的函数实现都有特定的要求,具体的要求请参考MongoDB文档

例子:

查询男生和女生的最大年龄

 > db.runCommand({
... "mapReduce": "school.students",
... "map": function(){
... emit({gender: this.gender}, this.age);
... },
... "reduce": function(key, values){
... var max = ;
... for(var i = ; i < values.length; i++)
... max = max>values[i]?max:values[i];
... return max;
... },
... "out": {inline: },
...
... })
{
"results" : [
{
"_id" : {
"gender" : "Female"
},
"value" :
},
{
"_id" : {
"gender" : "Male"
},
"value" :
}
],
"timeMillis" : ,
"counts" : {
"input" : ,
"emit" : ,
"reduce" : ,
"output" :
},
"ok" :
}
>

分别得到男生和女生的平均年龄

 > db.runCommand({
... "mapReduce": "school.students",
... "map": function(){
... emit({gender: this.gender}, this.age);
... },
... "reduce": function(key, values){
... var result = {"total": , "count": };
... for(var i = ; i < values.length; i++)
... result.total += values[i];
... result.count = values.length;
... return result;
... },
... "out": {inline: },
... "finalize": function(key, reducedValues){
... return reducedValues.total/reducedValues.count;
... }
... })
{
"results" : [
{
"_id" : {
"gender" : "Female"
},
"value" :
},
{
"_id" : {
"gender" : "Male"
},
"value" : 21.8
}
],
"timeMillis" : ,
"counts" : {
"input" : ,
"emit" : ,
"reduce" : ,
"output" :
},
"ok" :
}
>

小技巧:关于自定义js函数

在MongoDB中,可以通过db.system.js.save命令(其中system.js是一个存放js函数的collections)来创建并保存JavaScript函数,这样在就可以在MongoDB shell中重用这些函数。

比如,下面两个函数是网上网友实现的

SUM

db.system.js.save( { _id : "Sum" ,

value : function(key,values)

{

var total = 0;

for(var i = 0; i < values.length; i++)

total += values[i];

return total;

}});

AVERAGE

db.system.js.save( { _id : "Avg" ,

value : function(key,values)

{

var total = Sum(key,values);

var mean = total/values.length;

return mean;

}});

通过利用上面两个函数,我们的"分别得到男生和女生的平均年龄"例子就可以通过以下方式实现。

这个例子中,我们还特殊设置了"out"选项,把返回值存入了"average_age"这个collection中。

 > db.runCommand({
... "mapReduce": "school.students",
... "map": function(){
... emit({gender: this.gender}, this.age);
... },
... "reduce": function(key, values){
... avg = Avg(key, values);
... return avg;
... },
... "out": {"merge": "average_age"}
... })
{
"result" : "average_age",
"timeMillis" : ,
"counts" : {
"input" : ,
"emit" : ,
"reduce" : ,
"output" :
},
"ok" :
}
>

通过以下命令,我们可以看到新增的collection,并且查看里面的内容。

 > show collections
average_age
school.students
system.indexes
system.js
>
> db.average_age.find()
{ "_id" : { "gender" : "Female" }, "value" : }
{ "_id" : { "gender" : "Male" }, "value" : 21.8 }
>
> db.system.js.find()
{ "_id" : "Sum", "value" : function (key,values)
{
var total = ;
for(var i = ; i < values.length; i++)
total += values[i];
return total;
} }
{ "_id" : "Avg", "value" : function (key,values)
{
var total = Sum(key,values);
var mean = total/values.length;
return mean;
} }
>

总结

通过这篇文章,介绍了MongoDB中count、distinct、group和mapReduce的基本使用。没有一次把所有的聚合操作都看完,聚合管道只能放在下一次了。

Ps: 文章中使用的例子可以通过以下链接查看

http://files.cnblogs.com/wilber2013/aggregation.js

MongoDB中的聚合操作的更多相关文章

  1. 在MongoDB中实现聚合函数

    在MongoDB中实现聚合函数 随着组织产生的数据爆炸性增长,从GB到TB,从TB到PB,传统的数据库已经无法通过垂直扩展来管理如此之大数据.传统方法存储和处理数据的成本将会随着数据量增长而显著增加. ...

  2. MongoDB学习笔记——聚合操作之MapReduce

    MapReduce MongoDB中的MapReduce相当于关系数据库中的group by.使用MapReduce要实现两个函数Map和Reduce函数.Map函数调用emit(key,value) ...

  3. 在MongoDB中使用JOIN操作

    SQL与NoSQL最大的不同之一就是不支持JOIN,在传统的数据库中,SQL JOIN子句允许你使用普通的字段,在两个或者是更多表中的组合表中的每行数据.例如,如果你有表books和publisher ...

  4. 在MongoDB中实现聚合函数 (转)

    随着组织产生的数据爆炸性增长,从GB到TB,从TB到PB,传统的数据库已经无法通过垂直扩展来管理如此之大数据.传统方法存储和处理数据的成本将会随着数据量增长而显著增加.这使得很多组织都在寻找一种经济的 ...

  5. MongoDB 基本操作和聚合操作

    一 . MongoDB 基本操作 基本操作可以简单分为查询.插入.更新.删除. 1 文档查询 作用 MySQL SQL  MongoDB  所有记录  SELECT * FROM users;  db ...

  6. Numpy 中的聚合操作

    # 导包 import numpy as np sum np.random.seed(10) L = np.random.random(100) sum(L) np.sum(L) min np.min ...

  7. mongodb 数据库中 的聚合操作

  8. MongoDB学习笔记——聚合操作之聚合管道(Aggregation Pipeline)

    MongoDB聚合管道 使用聚合管道可以对集合中的文档进行变换和组合. 管道是由一个个功能节点组成的,这些节点用管道操作符来进行表示.聚合管道以一个集合中的所有文档作为开始,然后这些文档从一个操作节点 ...

  9. MongoDB学习笔记——聚合操作之group,distinct,count

    单独的聚合命令(group,distinct,count) 单独聚合命令 比aggregate性能低,比Map-reduce灵活度低:但是可以节省几行javascript代码,后面那句话我自己加的,哈 ...

随机推荐

  1. 唯一id算法

    https://blog.csdn.net/guodongcc322/article/details/55211273 https://blog.csdn.net/weixin_36751895/ar ...

  2. IDEA快捷键笔记

    Keymap:Mac OS X idea快速清除无用的引用:command+alt+o 跳转: 不同窗口之间的跳转(Next project window): alt + command + ] Pr ...

  3. 微信小程序——极点日历使用方法

    极点日历github项目地址 添加至自己的小程序方法 极点日历属性接口文档 代码实例: xml: <calendar calendar-style="calendar" he ...

  4. ndarray的数据类型

    dtype参数 案例1: dtype(数据类型) 是一个特殊的对象,它含有ndarray , 将一块内存解释为特定数据类型所需的信息. 案例2:  利用astype 方法显式地转换其dtype 注意: ...

  5. objective-C 的内存管理之-自动释放池(autorelease pool)

    如果一个对象的生命周期显而易见,很容易就知道什么时候该new一个对象,什么时候不再需要使用,这种情况下,直接用手动的retain和release来判定其生死足矣.但是有些时候,想知道某个对象在什么时候 ...

  6. [转]jQuery选择器 (详解)

    1).基本 #id 根据给定的ID匹配一个元素.例如:$("#id")element 根据给定的元素名匹配所有元素.例如:$("div").class 根据给定 ...

  7. JUnit教程

    测试是检查应用程序是否是工作按照要求,并确保在开发者水平,单元测试进入功能性的处理.单元测试是单一实体(类或方法)的测试. 单元测试在每一个软件公司开发高品质的产品给他们的客户是十分必要的. 单元测试 ...

  8. Linux定时任务工具crontab详解及系统时间同步

    Linux配置自动时间同步 linux下时间同步的两种方法分享 tail -f /var/log/cron linux下定时执行任务的方法  在LINUX中你应该先输入crontab -e,然后就会有 ...

  9. 远程桌面连接工具 Remote Desktop Manager 9.1.2.0 Enterprise 多国语言绿色版附注册码 简单使用

    1:修改成中文简体 2: 注册破解  (记得一定要先断网)   admin admin@admin.com 31GKI-OK1HY-59H35-Y8GPB-8WDY6 3 : 创建连接   搞定

  10. erlang的erl文件的编码方式

    在数据源头的文件第一行加上%%coding: latin-1