网络压缩论文整理(network compression)
1. Parameter pruning and sharing
1.1 Quantization and Binarization
Compressing deep convolutional networks using vector quantization
Binaryconnect: Training deep neural networks with binary weights during propagations
Binarynet: Training deep neural net- works with weights and activations constrained to +1 or -1
Xnor-net: Imagenet classification using binary convolutional neural networks
Deep neural networks are robust to weight binarization and other non- linear distortions
1.2 Pruning and Sharing
Comparing biases for minimal network construction with back-propagation
Second order derivatives for network pruning: Optimal brain surgeon
Learning both weights and connections for efficient neural networks
1.3 Designing Structural Matrix
2. Low rank factorization and sparsity
Exploiting linear structure within convolutional networks for efficient evaluation
Speeding up convolutional neural networks with low rank expansions
Speeding-up convolutional neural networks using fine-tuned cp- decomposition
Low-rank matrix factorization for deep neural network training with high-dimensional output targets
3. Transferred/compact convolution filters
Understanding and improving convolutional neural networks via concatenated rectified linear units
Inception-v4, inception-resnet and the impact of residual connections on learning
SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE
MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
4. Knowledge distillation
5. Other
Outrageously large neural networks: The sparsely- gated mixture-of-experts layer
Deep dynamic neural networks for multimodal gesture segmentation and recognition
Deep pyramidal residual networks with separated stochastic depth
6. Survey
网络压缩论文整理(network compression)的更多相关文章
- 网络压缩论文集(network compression)
Convolutional Neural Networks ImageNet Models Architecture Design Activation Functions Visualization ...
- 论文笔记——A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding
论文<A Deep Neural Network Compression Pipeline: Pruning, Quantization, Huffman Encoding> Prunin ...
- (转) GAN论文整理
本文转自:http://www.jianshu.com/p/2acb804dd811 GAN论文整理 作者 FinlayLiu 已关注 2016.11.09 13:21 字数 1551 阅读 1263 ...
- plain framework 1 1.0.3更新 优化编译部分、网络压缩和加密
有些东西总是姗姗来迟,就好比这新年的钟声,我们盼望着新年同时也不太旧的一年过去.每当这个时候,我们都会总结一下在过去的一年中我们收获了什么,再计划新的一年我们要实现什么.PF并不是一个十分优秀的框架, ...
- Microsoft Message Analyzer (微软消息分析器,“网络抓包工具 - Network Monitor”的替代品)官方正式版现已发布
来自官方日志的喜悦 被誉为全新开始的消息分析器时代,由MMA为您开启,博客原文写的很激动,大家可以点击这里浏览:http://blogs.technet.com/b/messageanalyzer/a ...
- Neutron 理解 (1): Neutron 所实现的虚拟化网络 [How Netruon Virtualizes Network]
学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...
- 专注于HTTP的高性能高易用性网络库:Fslib.network库
博客列表页:http://blog.fishlee.net/tag/fslib-network/ 原创FSLib.Network库(目前专注于HTTP的高性能高易用性网络库) FSLib.Networ ...
- Microsoft Message Analyzer (微软消息分析器,“网络抓包工具 - Network Monitor”的替代品)官方正式版现已发布
Microsoft Message Analyzer (微软消息分析器,“网络抓包工具 - Network Monitor”的替代品)官方正式版现已发布 来自官方日志的喜悦 被誉为全新开始的消息分析器 ...
- 存储区域网络(Storage Area Network,简称SAN)
存储区域网络(Storage Area Network,简称SAN)采用网状通道(Fibre Channel ,简称FC,区别与Fiber Channel光纤通道)技术,通过FC交换机连接存储阵列和服 ...
随机推荐
- oracle显示转换字段类型cast()函数
今天遇到一个查询类型转换的问题:表的字段是varchar2类型,然后查询到的结果要转换为number(20,2),刚开始的时候使用to_number()函数,发现不能满足需求.后来才知道,原来还有ca ...
- matlab常用方法
1:matlab进行符号的虚数运算 直接使用符号 a+b*j运算,结果是一个角度值,不是复数. 可以使用 a+b*(1j) 进行运算. 如下 position(index,)=radius; ...
- mybatis中使用where in查询时的注意事项
我使用的时候collection值为mapper的参数名如:int deleteRoleByUserIds(@Param("userIds") String[] userIds); ...
- PAT 1070 Mooncake[一般]
1070 Mooncake (25)(25 分) Mooncake is a Chinese bakery product traditionally eaten during the Mid-Aut ...
- CloudFlare Support - Error 522: Connection timed out 错误522:连接超时
522错误意味着我们无法在所有到达原点Web服务器. 这方面有几个主要原因: 原始服务器太超载回应. 源Web服务器具有挡住了我们的请求的防火墙,或者数据包被主机的网络内下降. 源Web服务器脱机,或 ...
- python中的re模块中的向后引用和零宽断言
1.后向引用 pattern = re.compile(r"(\w+)")#['hello', 'go', 'go', 'hello'] # pattern = re.compil ...
- iOS下拉刷新和上拉刷新
在iOS开发中,我们经常要用到下拉刷新和上拉刷新来加载新的数据,当前这也适合分页.iOS原生就带有该方法,下面就iOS自带的下拉刷新方法来简单操作. 上拉刷新 1.在TableView里,一打开软件, ...
- node初识——node中的require方法与require.js的区别
出处:http://blog.csdn.net/u013613428/article/details/51966500 作为一个前端的新手,总是诧异于js的模块载入方式,看到了通过requireJs提 ...
- PHP获取http头信息
PHP手册提供了现成的函数: getallheaders (PHP 4, PHP 5) getallheaders — Fetch all HTTP request headers 说明 array ...
- 027-chown命令
(1)只有文件主和超级用户才可以便用该命令.