http://codeforces.com/contest/568/problem/B

题意就是给一个有n个元素的集合,现在需要求有多少个A的二元关系p,使得p是对称的,是传递的,但不是自反的。

首先只用(x1, x1), (x2, x2).....这种二元对形成的传递,对称,非自反的满足条件的方法数为2^n - 1(每一对可以选择出现或者不出现,全部出现的情况是自反的,所以减掉1)

其次,由于如果存在(a, b)a!=b的二元关系对,那么a,b这两个元素一定在某一个环中(根据对称一定有(b, a)又根据传递一定有(a, a)与(b, b)),那么答案就是求不是每个点都在某一个环中的方法数,那么这时把某一个环看成是一个集合。设G[i]表示i个点形成若干个集合的方法数,再令F[i][j]表示i个点形成j个集合的方法数,那么G[i] = sigma(F[i][j] | j <= i/2),下面计算F[i][j]:

      F[i][j] = F[i - 1][j] * j + F[i - 2][j - 1] * (i - 1)

就是指第i个元素可以放在之前的某一个集合中,也可以与之前的某一个元素形成个数为2的集合

在算出G[i]后,来统计答案,这时候需要枚举有多少个(x, x)这样的二元对,设为i个,那么剩下的点就有n-i个,剩下的点可以选择j个(2 <= j <= n - i)来形成若干个集合来与i个(x, x)的数对形成一个合法的答案。那么这里合法的大案数量就是

      sigma(C[n][i] * sigma(C[n - i][j] * G[j]))其中,1<=i<=n-2  2<=j<=n-i   C为组合数

#include <map>
#include <set>
#include <stack>
#include <queue>
#include <cmath>
#include <ctime>
#include <vector>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define inf (-((LL)1<<40))
#define lson k<<1, L, mid
#define rson k<<1|1, mid+1, R
#define mem0(a) memset(a,0,sizeof(a))
#define mem1(a) memset(a,-1,sizeof(a))
#define mem(a, b) memset(a, b, sizeof(a))
#define FIN freopen("in.txt", "r", stdin)
#define FOUT freopen("out.txt", "w", stdout)
#define rep(i, a, b) for(int i = a; i <= b; i ++)
#define dec(i, a, b) for(int i = a; i >= b; i --) //typedef __int64 LL;
typedef long long LL;
const int MAXN = ;
const int MAXM = ;
const double eps = 1e-12;
const double PI = 4.0 * atan(1.0);
const int MOD = ; LL F[MAXN], C[MAXN][MAXN]; void initF(int n) {
F[] = C[][] = ;
rep (i, , n) {
F[i] = C[i][] = ;
rep (j, , i / ) {//C[i][j]表示i个点形成j个集合(环)的方案数
C[i][j] = ( C[i - ][j] * j % MOD + (i - ) * C[i - ][j - ] % MOD ) % MOD;
F[i] = ( F[i] + C[i][j] ) % MOD; //F[i]表示i个点形成若干个集合(环)的方案数
}
}
} void initC(int n) {
mem0(C);
C[][] = ;
rep (i, , n) {
C[i][] = C[i][i] = ;
rep (j, , n - ) //C[i][j]为组合数
C[i][j] = ( C[i - ][j - ] + C[i - ][j] ) % MOD;
}
} int main()
{
#ifndef ONLINE_JUDGE
FIN;
// FOUT;
#endif // ONLINE_JUDGE
initF();
initC();
int n;
while(cin >> n) {
LL ans = ;
//首先计算2^n - 1
rep (i, , n) ans = ans * % MOD;
ans = (ans - + MOD) % MOD; //sigma(C[n][i] * sigma(C[n - i][j] * G[j]))
rep (i, , n - ) {
int m = n - i;
LL S = ;
rep (j, , m) {
S = ( S + C[m][j] * F[j] ) % MOD;
}
ans = (ans + S * C[n][i]) % MOD;
}
cout << ans << endl;
}
return ;
}

codeforces315Div1 B Symmetric and Transitive的更多相关文章

  1. codeforces 569D D. Symmetric and Transitive(bell数+dp)

    题目链接: D. Symmetric and Transitive time limit per test 1.5 seconds memory limit per test 256 megabyte ...

  2. Codeforces 568B Symmetric and Transitive

    http://codeforces.com/contest/568/problem/B 题意:题意还挺绕的,其实就是说:要你求出一个图,要求保证其中有至少一个点不连任何边,然后其他连边的点构成的每个联 ...

  3. CodeForces 568B DP Symmetric and Transitive

    题意: 根据离散数学的内容知道,一个二元关系是一个二元有序组<x, y>的集合. 然后有一些特殊的二元关系,比如等价关系,满足三个条件: 自反性,任意的x,都有二元关系<x, x&g ...

  4. 数学用语中的 透明 transitive property

    1.透明 https://en.wikipedia.org/wiki/Equivalence_relation In mathematics, an equivalence relation is a ...

  5. How to implement equals() and hashCode() methods in Java[reproduced]

    Part I:equals() (javadoc) must define an equivalence relation (it must be reflexive, symmetric, and ...

  6. Discrete.Differential.Geometry-An.Applied.Introduction(sig2008)笔记

    -------------------------------------------------------------- Chapter 1: Introduction to Discrete D ...

  7. override equals in Java

    equals() (javadoc) must define an equality relation (it must be reflexive, symmetric, and transitive ...

  8. Java的Object对象

    Object对象是除了基础对象之外,所有的对象都需要继承的父对象,包括数组也继承了Object Object里面的关键函数罗列如下: clone();调用该函数需要实现 Cloneable,否则会抛出 ...

  9. Codeforces Round #315 (Div. 2) (ABCD题解)

    比赛链接:http://codeforces.com/contest/569 A. Music time limit per test:2 seconds memory limit per test: ...

随机推荐

  1. yii CFormModel中的rules验证机制

    public function rules() { return array( array('username, password', 'required'), array('rememberMe', ...

  2. CSS#Flex-box, border-size, onresize() event, Media Queries

    Flexbox Pseudo-classes box-sizing: border-box HTML DOM event  resize() @media Queries: 根据一些css条件,触发一 ...

  3. 玲珑杯 ACM热身赛 #2.5 A 记忆化搜索+瞎搞

    #include <cstdio> #include <vector> #include <iostream> #include <algorithm> ...

  4. Objections vs. excuses

    Objections are healthy. When someone is being offered a new opportunity or product, it's not unusual ...

  5. Python解析Wav文件并绘制波形的方法

    资源下载 #本文PDF版下载 Python解析Wav文件并绘制波形的方法 #本文代码下载 Wav波形绘图代码 #本文实例音频文件night.wav下载 音频文件下载 (石进-夜的钢琴曲) 前言 在现在 ...

  6. bzoj1834: [ZJOI2010]network 网络扩容 费用流

    bzoj1834 给定一张有向图,每条边都有一个容量C和一个扩容费用W.这里扩容费用是指将容量扩大1所需的费用. 求: 1.在不扩容的情况下,1到N的最大流: 2.将1到N的最大流增加K所需的最小扩容 ...

  7. 负载均衡中使用 Redis 实现共享 Session

    最近在研究Web架构方面的知识,包括数据库读写分离,Redis缓存和队列,集群,以及负载均衡(LVS),今天就来先学习下我在负载均衡中遇到的问题,那就是session共享的问题. 一.负载均衡 负载均 ...

  8. en_o out1

    1● o əʊ ɒ ə ɔː ʌ ʊ:     2● oor ʊə ɔː   3● oo u u:     4● or ɜː ə ɔː   5● oar ore ɔː   6● ow   əʊ aʊ ...

  9. 数据库schema的简介

    [参考]自百度百科 数据库中的Schema,为数据库对象的集合,一个用户一般对应一个schema. 官方定义如下: A schema is a collection of database objec ...

  10. 1.1 C++布尔类型(bool)

    注意: c++ 中 cout << true << endl;  输出为 1: 布尔类型(bool)是C++新增的一种基本数据类型.在标准的C语言中并未定义bool类型,如果需 ...