/**
* Created by lkl on 2018/1/16.
*/
import org.apache.spark.mllib.evaluation.BinaryClassificationMetrics
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.LabeledPoint
import org.apache.spark.mllib.tree.GradientBoostedTrees
import org.apache.spark.mllib.tree.configuration.BoostingStrategy
import org.apache.spark.mllib.tree.model.GradientBoostedTreesModel
import org.apache.spark.sql.{Row, SaveMode}
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.{DoubleType, StringType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}
import scala.collection.mutable.ArrayBuffer
object abregression3Model20180116 {
def main(args: Array[String]): Unit = { val sparkConf = new SparkConf().setAppName("abregression3Model20180116")
val sc = new SparkContext(sparkConf)
val hc = new HiveContext(sc)
val data = hc.sql(s"select * from lkl_card_score.fqz_score_dataset_03train").map {
row =>
val arr = new ArrayBuffer[Double]()
//剔除label、phone字段
for (i <- 3 until row.size) {
if (row.isNullAt(i)) {
arr += 0.0
}
else if (row.get(i).isInstanceOf[Int])
arr += row.getInt(i).toDouble
else if (row.get(i).isInstanceOf[Double])
arr += row.getDouble(i)
else if (row.get(i).isInstanceOf[Long])
arr += row.getLong(i).toDouble
else if (row.get(i).isInstanceOf[String])
arr += 0.0
}
LabeledPoint(row.getInt(2).toDouble, Vectors.dense(arr.toArray))
} // Split data into training (60%) and test (40%)
val Array(trainingData, testData) = data.randomSplit(Array(0.7,0.3), seed = 11L)
// 逻辑回归是迭代算法,所以缓存训练数据的RDD
trainingData.cache()
//使用SGD算法运行逻辑回归 val boostingStrategy = BoostingStrategy.defaultParams("Regression")
boostingStrategy.setNumIterations(40) // Note: Use more iterations in practice.
boostingStrategy.treeStrategy.setMaxDepth(6)
boostingStrategy.treeStrategy.setMinInstancesPerNode(50)
val model = GradientBoostedTrees.train(data, boostingStrategy)
model.save(sc, s"hdfs://ns1/user/songchunlin/model/abregression3Model20180116") sc.makeRDD(Seq(model.toDebugString)).repartition(1).saveAsTextFile(s"hdfs://ns1/user/songchunlin/model/toDebugString/abregression3Model20180116")
// 全量data数据打分,原本用testData打分
val omodel=GradientBoostedTreesModel.load(sc,s"hdfs://ns1/user/songchunlin/model/abregression3Model20180116")
val predictionAndLabels = data.map { case LabeledPoint(label, features) =>
val prediction = omodel.predict(features)
(prediction, label)
} println("testData count = " + testData.count())
println("predictionAndLabels count = " + predictionAndLabels.count())
predictionAndLabels.map(x => {"predicts: "+x._1+"--> labels:"+x._2}).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/predictionAndLabels") val metrics = new BinaryClassificationMetrics(predictionAndLabels) val precision = metrics.precisionByThreshold precision.map({case (t, p) =>
"Threshold: "+t+"Precision:"+p
}).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/precision") val recall = metrics.recallByThreshold recall.map({case (t, r) =>
"Threshold: "+t+"Recall:"+r
}).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/recall") val beta = 2
val f2Score = metrics.fMeasureByThreshold(beta) f2Score.map(x => {"Threshold: "+x._1+"--> F-score:"+x._2+"--> Beta = 2"})
.saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/f1Score") val prc = metrics.pr
prc.map(x => {"Recall: " + x._1 + "--> Precision: "+x._2 }).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/prc") // AUPRC,精度,召回曲线下的面积
val auPRC = metrics.areaUnderPR
println("Area under precision-recall curve = " +auPRC)
sc.makeRDD(Seq("Area under precision-recall curve = " +auPRC)).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/auPRC") //roc
val roc = metrics.roc
roc.map(x => {"FalsePositiveRate:" + x._1 + "--> Recall: " +x._2}).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/roc") // AUC
val auROC = metrics.areaUnderROC
sc.makeRDD(Seq("Area under ROC = " + +auROC)).saveAsTextFile(s"hdfs://ns1/user/szdsjkf/model_training/jrsc/20171218/auROC")
println("Area under ROC = " + auROC)
//val accuracy = 1.0 * predictionAndLabels.filter(x => x._1 == x._2).count() / testData.count() val dataInstance = hc.sql(s"select * from lkl_card_score.fqz_score_dataset_03train").map {
row =>
val arr = new ArrayBuffer[Double]()
//剔除label、phone字段
for (i <- 3 until row.size) {
if (row.isNullAt(i)) {
arr += 0.0
}
else if (row.get(i).isInstanceOf[Int])
arr += row.getInt(i).toDouble
else if (row.get(i).isInstanceOf[Double])
arr += row.getDouble(i)
else if (row.get(i).isInstanceOf[Long])
arr += row.getLong(i).toDouble
else if (row.get(i).isInstanceOf[String])
arr += 0.0
}
(row(0),row(1),row(2),Vectors.dense(arr.toArray))
} val preditDataGBDT = dataInstance.map { point =>
val prediction = model.predict(point._4)
//order_id,apply_time,score
(point._1,point._2,point._3,prediction)
} //rdd转dataFrame
val rowRDD = preditDataGBDT.map(row => Row(row._1.toString,row._2.toString,row._3.toString,row._4))
val schema = StructType(
List(
StructField("order_id", StringType, true),
StructField("apply_time", StringType, true),
StructField("label", StringType, true),
StructField("score", DoubleType, true)
)
)
//将RDD映射到rowRDD,schema信息应用到rowRDD上
val scoreDataFrame = hc.createDataFrame(rowRDD,schema)
scoreDataFrame.count()
scoreDataFrame.write.mode(SaveMode.Overwrite).saveAsTable("lkl_card_score.fqz_score_dataset_03train_predict") // 自己测试建模 val balance = hc.sql(s"select * from lkl_card_score.overdue_result_all_new_woe_instant_v3_02train where label='1' limit 85152 union all select * from lkl_card_score.overdue_result_all_new_woe_instant_v3_02train where label='0'").map {
row =>
val arr = new ArrayBuffer[Double]()
//剔除label、phone字段
for (i <- 3 until row.size) {
if (row.isNullAt(i)) {
arr += 0.0
}
else if (row.get(i).isInstanceOf[Int])
arr += row.getInt(i).toDouble
else if (row.get(i).isInstanceOf[Double])
arr += row.getDouble(i)
else if (row.get(i).isInstanceOf[Long])
arr += row.getLong(i).toDouble
else if (row.get(i).isInstanceOf[String])
arr += 0.0
}
LabeledPoint(row.getInt(2).toDouble, Vectors.dense(arr.toArray))
} // 逻辑回归是迭代算法,所以缓存训练数据的RDD
balance.cache()
val boostingStrategy1 = BoostingStrategy.defaultParams("Regression")
boostingStrategy1.setNumIterations(40) // Note: Use more iterations in practice.
boostingStrategy1.treeStrategy.setMaxDepth(6)
boostingStrategy1.treeStrategy.setMinInstancesPerNode(50) val model2 = GradientBoostedTrees.train(balance, boostingStrategy1) val predictionAndLabels2 = data.map { case LabeledPoint(label, features) =>
val prediction = model2.predict(features)
(prediction, label)
}
val metrics2 = new BinaryClassificationMetrics(predictionAndLabels2)
// AUPRC,精度,召回曲线下的面积
val auPRC1 = metrics2.areaUnderPR val preditDataGBDT1 = dataInstance.map { point =>
val prediction2 = model2.predict(point._4)
//order_id,apply_time,score
(point._1,point._2,point._3,prediction2)
}
//rdd转dataFrame
val rowRDD2 = preditDataGBDT1.map(row => Row(row._1.toString,row._2.toString,row._3.toString,row._4))
val schema2 = StructType(
List(
StructField("order_id", StringType, true),
StructField("apply_time", StringType, true),
StructField("label", StringType, true),
StructField("score", DoubleType, true)
)
) val scoreDataFrame2 = hc.createDataFrame(rowRDD2,schema2)
scoreDataFrame2.count()
scoreDataFrame2.write.mode(SaveMode.Overwrite).saveAsTable("lkl_card_score.fqz_score_dataset_02val_170506_predict") }
}

lakala反欺诈建模实际应用代码GBDT监督学习的更多相关文章

  1. AI反欺诈:千亿的蓝海,烫手的山芋|甲子光年

    不久前,一家业界领先的机器学习公司告诉「甲子光年」:常有客户带着迫切的反欺诈需求主动找来,但是,我们不敢接. 难点何在? 作者|晕倒羊 编辑|甲小姐 设计|孙佳栋 生死欺诈 企业越急速发展,越容易产生 ...

  2. 反欺诈(Fraud Detection)中所用到的机器学习模型

    反欺诈应用的机器模型算法,多为二分类算法. 1.gbdt梯度提升决策树(Gradient Boosting Decision Tree,GBDT)算法,该算法的性能高,且在各类数据挖掘中应用广泛,表现 ...

  3. 基于Vue2和Node.js的反欺诈系统设计与实现

    最近包工头喊农民工小郑搬砖,小郑搬完砖后沉思片刻,决定写篇小作文分享下,作为一个初学者的全栈项目,去学习它的搭建,到落地,再到部署维护,是非常好的. ​ ------题记 写在前面 通过本文的学习,你 ...

  4. 反编译工具 使用.NET JustDecompile来反编译你的程序代码

    原文地址:http://www.it165.net/pro/html/201310/7383.html 前言 在项目的进行中有时会碰到需要去了解由第三方所开发的程序代码或者因为年久已经遗失原始码的程序 ...

  5. python金融反欺诈-项目实战

    python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_camp ...

  6. Android Studio 动态调试 apk 反编译出的 smali 代码

    在信安大赛的准备过程中,主要通过 Android Studio 动态调试 apk 反编译出来的 smali 代码的方式来对我们分析的执行流程进行验证.该技巧的主要流程在此记录.以下过程使用 Andro ...

  7. 使用.NET JustDecompile来反编译你的程序代码

    前言 在项目的进行中有时会碰到需要去了解由第三方所开发的程序代码或者因为年久已经遗失原始码的程序,由于因为是别人写的所以我们并没有原始码可以直接阅读,碰到这种情况我们就需要去反编译这些程序及 DLL ...

  8. OAF_开发系列28_实现OAF中反编译获取class包代码JD Compiler(案例)

    20150730 Created By BaoXinjian

  9. 使用VBA进行JS加密的反混淆,还原JS代码。

    本文地址:http://www.cnblogs.com/Charltsing/p/JSEval.html 联系QQ:564955427 类似下面的代码是登陆 全国企业信用信息公示系统(安徽)(网址:h ...

随机推荐

  1. spring filter 配置

    web xml <filter>    <filter-name>DelegatingFilterProxy</filter-name>    <filter ...

  2. repo常用指令

    下载 repo 的地址: http://android.git.kernel.org/repo ,可以用 wget http://android.git.kernel.org/repo 或者 curl ...

  3. KVM虚拟机的xml配置文件

    在RHEL6中,用于从磁盘启动的XML文件 这里以dcs01.xml为例: <domain type='kvm'><name>dcs01</name><uui ...

  4. Redis面试题及分布式集群

    Reference: http://blog.csdn.net/yajlv/article/details/73467865 1. 使用Redis有哪些好处? (1) 速度快,因为数据存在内存中,类似 ...

  5. mybatis中mysql和oracle的差异

    1.applicationContext.xml中的配置差异: 在applicationContext.xml的数据源dataSource的配置中,mysql数据库需要心跳包的配置,而oracle中不 ...

  6. Quartz Scheduler Calendar日历的使用

    Quartz Calendar 日历的使用 quartz引擎为我们提供了日历的功能,让我们可以自己定义一个时间段,可以控制触发器在这个时间段内触发或者不触发,比如可以设置节假日,工作时间早8晚5等等. ...

  7. NHibernate 知识点整理

    1.实体bool类型属性与数据库映射.如实体中有bool属性IsDelete.配置如下 <property column="IsDelete" name="IsDe ...

  8. Pycharm新建文件时自动添加基础信息

    位置:File->settings->Editor->File and Code Templates->Python Script 添加以下代码: #!/usr/bin/env ...

  9. React Native安卓项目打包发布APK步骤

    1.产生签名的key 该过程会用到keytool,开发过安卓的都应该接触过该东西.详细请见密钥和证书管理工具.在项目的主目录(不是android文件夹)中执行: --生成签名key,注意记下你的密钥和 ...

  10. Android跳转系统界面_大全集

    1.跳转Setting应用列表(所有应用) Intent intent = new Intent(Settings.ACTION_MANAGE_ALL_APPLICATIONS_SETTINGS); ...