Exercise: Implement deep networks for digit classification

习题链接:Exercise: Implement deep networks for digit classification

stackedAEPredict.m

function [pred] = stackedAEPredict(theta, inputSize, hiddenSize, numClasses, netconfig, data)

% stackedAEPredict: Takes a trained theta and a test data set,
% and returns the predicted labels for each example. % theta: trained weights from the autoencoder
% visibleSize: the number of input units
% hiddenSize: the number of hidden units *at the 2nd layer*
% numClasses: the number of categories
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example. % Your code should produce the prediction matrix
% pred, where pred(i) is argmax_c P(y(c) | x(i)). %% Unroll theta parameter % We first extract the part which compute the softmax gradient
softmaxTheta = reshape(theta(:hiddenSize*numClasses), numClasses, hiddenSize); % Extract out the "stack"
stack = params2stack(theta(hiddenSize*numClasses+:end), netconfig); %% ---------- YOUR CODE HERE --------------------------------------
% Instructions: Compute pred using theta assuming that the labels start
% from . numCases = size(data, ); % forward
z2 = stack{}.w * data + repmat(stack{}.b, , numCases);
a2 = sigmoid(z2);
z3 = stack{}.w * a2 + repmat(stack{}.b, , numCases);
a3 = sigmoid(z3);
[~, pred] = max(softmaxTheta * a3); % ----------------------------------------------------------- end % You might find this useful
function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end

stackedAECost.m

function [ cost, grad ] = stackedAECost(theta, inputSize, hiddenSize, ...
numClasses, netconfig, ...
lambda, data, labels) % stackedAECost: Takes a trained softmaxTheta and a training data set with labels,
% and returns cost and gradient using a stacked autoencoder model. Used for
% finetuning. % theta: trained weights from the autoencoder
% visibleSize: the number of input units
% hiddenSize: the number of hidden units *at the 2nd layer*
% numClasses: the number of categories
% netconfig: the network configuration of the stack
% lambda: the weight regularization penalty
% data: Our matrix containing the training data as columns. So, data(:,i) is the i-th training example.
% labels: A vector containing labels, where labels(i) is the label for the
% i-th training example %% Unroll softmaxTheta parameter % We first extract the part which compute the softmax gradient
softmaxTheta = reshape(theta(:hiddenSize*numClasses), numClasses, hiddenSize); % Extract out the "stack"
stack = params2stack(theta(hiddenSize*numClasses+:end), netconfig); % You will need to compute the following gradients
softmaxThetaGrad = zeros(size(softmaxTheta));
stackgrad = cell(size(stack));
for d = :numel(stack)
stackgrad{d}.w = zeros(size(stack{d}.w));
stackgrad{d}.b = zeros(size(stack{d}.b));
end cost = ; % You need to compute this % You might find these variables useful
numCases = size(data, );
groundTruth = full(sparse(labels, :numCases, )); %% --------------------------- YOUR CODE HERE -----------------------------
% Instructions: Compute the cost function and gradient vector for
% the stacked autoencoder.
%
% You are given a stack variable which is a cell-array of
% the weights and biases for every layer. In particular, you
% can refer to the weights of Layer d, using stack{d}.w and
% the biases using stack{d}.b . To get the total number of
% layers, you can use numel(stack).
%
% The last layer of the network is connected to the softmax
% classification layer, softmaxTheta.
%
% You should compute the gradients for the softmaxTheta,
% storing that in softmaxThetaGrad. Similarly, you should
% compute the gradients for each layer in the stack, storing
% the gradients in stackgrad{d}.w and stackgrad{d}.b
% Note that the size of the matrices in stackgrad should
% match exactly that of the size of the matrices in stack.
% z2 = stack{}.w * data + repmat(stack{}.b, , numCases);
a2 = sigmoid(z2);
z3 = stack{}.w * a2 + repmat(stack{}.b, , numCases);
a3 = sigmoid(z3);
M = softmaxTheta * a3;
M = bsxfun(@minus, M, max(M, [], ));
M = exp(M);
M = bsxfun(@rdivide, M, sum(M));
diff = groundTruth - M; cost = -(/numCases) * sum(sum(groundTruth .* log(M))) + (lambda/) * sum(sum(softmaxTheta .* softmaxTheta)); for i=:numClasses
softmaxThetaGrad(i, :) = -(/numCases) * (sum(a3 .* repmat(diff(i, :), hiddenSize, ), ))' + lambda * softmaxTheta(i, :);
end delta3 = - (softmaxTheta' * diff) .* sigmoiddiff(z3);
stackgrad{}.w = delta3 * (a2)' ./ numCases;
stackgrad{}.b = sum(delta3, )./ numCases;
delta2 = (stack{}.w' * delta3) .* sigmoiddiff(z2);
stackgrad{}.w = delta2 * data'./ numCases;
stackgrad{}.b = sum(delta2, )./ numCases; % ------------------------------------------------------------------------- %% Roll gradient vector
grad = [softmaxThetaGrad(:) ; stack2params(stackgrad)]; end % You might find this useful
function sigm = sigmoid(x)
sigm = ./ ( + exp(-x));
end function sigmdiff = sigmoiddiff(x)
sigmdiff = sigmoid(x) .* ( - sigmoid(x));
end

stackedAEExercise.m

%% CS294A/CS294W Stacked Autoencoder Exercise

%  Instructions
% ------------
%
% This file contains code that helps you get started on the
% sstacked autoencoder exercise. You will need to complete code in
% stackedAECost.m
% You will also need to have implemented sparseAutoencoderCost.m and
% softmaxCost.m from previous exercises. You will need the initializeParameters.m
% loadMNISTImages.m, and loadMNISTLabels.m files from previous exercises.
%
% For the purpose of completing the assignment, you do not need to
% change the code in this file.
%
%%======================================================================
%% STEP : Here we provide the relevant parameters values that will
% allow your sparse autoencoder to get good filters; you do not need to
% change the parameters below. inputSize = * ;
numClasses = ;
hiddenSizeL1 = ; % Layer Hidden Size
hiddenSizeL2 = ; % Layer Hidden Size
sparsityParam = 0.1; % desired average activation of the hidden units.
% (This was denoted by the Greek alphabet rho, which looks like a lower-case "p",
% in the lecture notes).
lambda = 3e-; % weight decay parameter
beta = ; % weight of sparsity penalty term %%======================================================================
%% STEP : Load data from the MNIST database
%
% This loads our training data from the MNIST database files. % Load MNIST database files
trainData = loadMNISTImages('mnist/train-images-idx3-ubyte');
trainLabels = loadMNISTLabels('mnist/train-labels-idx1-ubyte'); trainLabels(trainLabels == ) = ; % Remap to since our labels need to start from %%======================================================================
%% STEP : Train the first sparse autoencoder
% This trains the first sparse autoencoder on the unlabelled STL training
% images.
% If you've correctly implemented sparseAutoencoderCost.m, you don't need
% to change anything here. % Randomly initialize the parameters
sae1Theta = initializeParameters(hiddenSizeL1, inputSize); %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the first layer sparse autoencoder, this layer has
% an hidden size of "hiddenSizeL1"
% You should store the optimal parameters in sae1OptTheta addpath minFunc/
options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = ; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [sae1OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
inputSize, hiddenSizeL1, ...
lambda, sparsityParam, ...
beta, trainData), ...
sae1Theta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Train the second sparse autoencoder
% This trains the second sparse autoencoder on the first autoencoder
% featurse.
% If you've correctly implemented sparseAutoencoderCost.m, you don't need
% to change anything here. [sae1Features] = feedForwardAutoencoder(sae1OptTheta, hiddenSizeL1, ...
inputSize, trainData); % Randomly initialize the parameters
sae2Theta = initializeParameters(hiddenSizeL2, hiddenSizeL1); %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the second layer sparse autoencoder, this layer has
% an hidden size of "hiddenSizeL2" and an inputsize of
% "hiddenSizeL1"
%
% You should store the optimal parameters in sae2OptTheta options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% sparseAutoencoderCost.m satisfies this.
options.maxIter = ; % Maximum number of iterations of L-BFGS to run
options.display = 'on'; [sae2OptTheta, cost] = minFunc( @(p) sparseAutoencoderCost(p, ...
hiddenSizeL1, hiddenSizeL2, ...
lambda, sparsityParam, ...
beta, sae1Features), ...
sae2Theta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Train the softmax classifier
% This trains the sparse autoencoder on the second autoencoder features.
% If you've correctly implemented softmaxCost.m, you don't need
% to change anything here. [sae2Features] = feedForwardAutoencoder(sae2OptTheta, hiddenSizeL2, ...
hiddenSizeL1, sae1Features); % Randomly initialize the parameters
saeSoftmaxTheta = 0.005 * randn(hiddenSizeL2 * numClasses, ); %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the softmax classifier, the classifier takes in
% input of dimension "hiddenSizeL2" corresponding to the
% hidden layer size of the 2nd layer.
%
% You should store the optimal parameters in saeSoftmaxOptTheta
%
% NOTE: If you used softmaxTrain to complete this part of the exercise,
% set saeSoftmaxOptTheta = softmaxModel.optTheta(:); options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% softmaxCost.m satisfies this.
minFuncOptions.display = 'on'; [saeSoftmaxOptTheta, cost] = minFunc( @(p) softmaxCost(p, ...
numClasses, hiddenSizeL2, lambda, ...
sae2Features, trainLabels), ...
saeSoftmaxTheta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Finetune softmax model % Implement the stackedAECost to give the combined cost of the whole model
% then run this cell. % Initialize the stack using the parameters learned
stack = cell(,);
stack{}.w = reshape(sae1OptTheta(:hiddenSizeL1*inputSize), ...
hiddenSizeL1, inputSize);
stack{}.b = sae1OptTheta(*hiddenSizeL1*inputSize+:*hiddenSizeL1*inputSize+hiddenSizeL1);
stack{}.w = reshape(sae2OptTheta(:hiddenSizeL2*hiddenSizeL1), ...
hiddenSizeL2, hiddenSizeL1);
stack{}.b = sae2OptTheta(*hiddenSizeL2*hiddenSizeL1+:*hiddenSizeL2*hiddenSizeL1+hiddenSizeL2); % Initialize the parameters for the deep model
[stackparams, netconfig] = stack2params(stack);
stackedAETheta = [ saeSoftmaxOptTheta ; stackparams ]; %% ---------------------- YOUR CODE HERE ---------------------------------
% Instructions: Train the deep network, hidden size here refers to the '
% dimension of the input to the classifier, which corresponds
% to "hiddenSizeL2".
%
% options.Method = 'lbfgs'; % Here, we use L-BFGS to optimize our cost
% function. Generally, for minFunc to work, you
% need a function pointer with two outputs: the
% function value and the gradient. In our problem,
% softmaxCost.m satisfies this.
minFuncOptions.display = 'on'; [stackedAEOptTheta, cost] = minFunc( @(p) stackedAECost(p, ...
inputSize, hiddenSizeL2, numClasses, ...
netconfig, lambda, trainData, trainLabels), ...
stackedAETheta, options); % ------------------------------------------------------------------------- %%======================================================================
%% STEP : Test
% Instructions: You will need to complete the code in stackedAEPredict.m
% before running this part of the code
% % Get labelled test images
% Note that we apply the same kind of preprocessing as the training set
testData = loadMNISTImages('mnist/t10k-images-idx3-ubyte');
testLabels = loadMNISTLabels('mnist/t10k-labels-idx1-ubyte'); testLabels(testLabels == ) = ; % Remap to [pred] = stackedAEPredict(stackedAETheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('Before Finetuning Test Accuracy: %0.3f%%\n', acc * ); [pred] = stackedAEPredict(stackedAEOptTheta, inputSize, hiddenSizeL2, ...
numClasses, netconfig, testData); acc = mean(testLabels(:) == pred(:));
fprintf('After Finetuning Test Accuracy: %0.3f%%\n', acc * ); % Accuracy is the proportion of correctly classified images
% The results for our implementation were:
%
% Before Finetuning Test Accuracy: 87.7%
% After Finetuning Test Accuracy: 97.6%
%
% If your values are too low (accuracy less than %), you should check
% your code for errors, and make sure you are training on the
% entire data set of 28x28 training images
% (unless you modified the loading code, this should be the case)

Before Finetuning Test Accuracy: 87.740%
After Finetuning Test Accuracy: 97.610%

【DeepLearning】Exercise: Implement deep networks for digit classification的更多相关文章

  1. Deep Learning 8_深度学习UFLDL教程:Stacked Autocoders and Implement deep networks for digit classification_Exercise(斯坦福大学深度学习教程)

    前言 1.理论知识:UFLDL教程.Deep learning:十六(deep networks) 2.实验环境:win7, matlab2015b,16G内存,2T硬盘 3.实验内容:Exercis ...

  2. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  3. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  4. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  5. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  6. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  7. 【DeepLearning】Exercise:Learning color features with Sparse Autoencoders

    Exercise:Learning color features with Sparse Autoencoders 习题链接:Exercise:Learning color features with ...

  8. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  9. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

随机推荐

  1. 用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

    https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类 ...

  2. 如何在Centos7上安装和使用ZFS

    导读 ZFS文件系统的英文名称为ZettabyteFileSystem,也叫动态文件系统(DynamicFileSystem),是第一个128位文件系统.最初是由Sun公司为Solaris10操作系统 ...

  3. Android:安装时提示:INSTALL_FAILED_INSUFFICIENT_STORAGE

    在将程序发布到手机上时提示该错误: INSTALL_FAILED_INSUFFICIENT_STORAGE 解决方法: 1. adb shell 2. #df # df df Filesystem   ...

  4. ActiveMQ面试专题

    https://blog.csdn.net/belvine/article/details/79399798

  5. SpringBoot添加对Mybatis的支持

    1.修改maven配置文件pom.xml,添加对mybatis的支持: <dependency> <groupId>org.mybatis.spring.boot</gr ...

  6. python网络爬虫 - 设定重试次数内反复抓取

    import urllib.request def download(url, num_retries=2): print('Downloading:', url) try: html = urlli ...

  7. Jquery遍历筛选数组的几种方法和遍历解析json对象|Map()方法详解

    Jquery遍历筛选数组的几种方法和遍历解析json对象|Map()方法详解 一.Jquery遍历筛选数组 1.jquery grep()筛选遍历数组 $().ready( function(){ v ...

  8. ZH奶酪:PHP抓取网页方法总结

    From:http://www.jb51.net/article/24343.htm 在做一些天气预报或者RSS订阅的程序时,往往需要抓取非本地文件,一般情况下都是利用php模拟浏览器的访问,通过ht ...

  9. 【自动化测试】基于IntelliJ IDEA的Gradle和testNG

    这几篇文章值得一读: TestNG测试框架使用笔记:http://www.cnblogs.com/xguo/p/3300358.html TestNg官方文档:http://testng.org/do ...

  10. Linux安装pear包

    一.安装pear包. 1.安装: $ sudo wget http://pear.php.net/go-pear.phar $ sudo php go-pear.har 2.查看pear下安装的包: ...