1. EM算法-数学基础

2. EM算法-原理详解

3. EM算法-高斯混合模型GMM

4. EM算法-高斯混合模型GMM详细代码实现

5. EM算法-高斯混合模型GMM+Lasso

1. 凸函数

通常在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的。

定义1:集合\(R_c\subset E^n\)是凸集,如果对每对点\(\textbf{x}_1,\textbf{x}_2\subset R_c\),每个实数\(\alpha,0<\alpha<1\),点\(\textbf{x}\in R_c\)

\[
\textbf{x}=\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2
\]

定义2:我们称定义在凸集\(R_c\)上的函数\(f(x)\)为凸的,如果对每对\(\textbf{x}_1,\textbf{x}_2 \in R_c\)与每个实数\(\alpha ,0<\alpha<1\),则满足不等式

\[
f[\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2]\leq\alpha f(\textbf{x}_1)+(1-\alpha)f(\textbf{x}_2)
\]

如果\(\textbf{x}_1\neq\textbf{x}_2\),则f(x)是严格凸的。

\[
f[\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2]<\alpha f(\textbf{x}_1)+(1-\alpha)f(\textbf{x}_2)
\]

2. Jensen不等式

定义1:若\(f(x)\)为区间\(X\)上的凸函数,则\(\forall n \in \mathbb N, n \ge 1,\), 若\(\forall i \in \mathbb N, 1 \le i \le n, x_i \in X, \lambda_i \in \mathbb R,\),且\(\sum^n_{i=1}\lambda_i=1\), 则:

\[
f(\sum_{i=1}^{n} \lambda_i x_i) \le \sum_{i=1}^{n} \lambda_i f(x_i)
\]

推论1:若\(f(x)\)为区间\(R\)上的凸函数,\(g(x): R \rightarrow R\)为一任意函数,\(X\)为一取值范围有限的离散变量,\(E [f \left ( g(X) \right ) ]\)与\(E[g(X)]\)都存在,则:

\[
E [f \left ( g(X) \right ) ] \ge f \left (E[g(X)] \right )
\]

3. 极大似然估计

极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计。

一般说来,事件\(A\)发生的概率与某一未知参数\(\theta\)有关,\(\theta\)的取值不同,则事件\(A\)发生的概率\(P(A|\theta)\)也不同,当我们在一次试验中事件\(A\)发生了,则认为此时的\(\theta\)值应是\(t\)的一切可能取值中使\(P(A|\theta)\)达到最大的那一个,极大似然估计法就是要选取这样的\(t\)值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。

直观的例子:
设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。

1. EM算法-数学基础的更多相关文章

  1. 5. EM算法-高斯混合模型GMM+Lasso

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...

  2. 4. EM算法-高斯混合模型GMM详细代码实现

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...

  3. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

  4. 2. EM算法-原理详解

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...

  5. 机器学习——EM算法

    1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...

  6. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

  7. 学习笔记——EM算法

    EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求 ...

  8. K-Means聚类和EM算法复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 k-means算法是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内 ...

  9. EM算法总结

    EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用 ...

随机推荐

  1. iscsi target 研究

    一.概述 目前 Linux 上主要有三个 iSCSI Target 实现: Linux SCSI Target – STGT / tgt     Linux-IO Target – LIO SCST ...

  2. 【svn】解析subversion的使用

    目录结构: contents structure [-] 安装客户端 安装服务端 创建仓库 启动仓库 创建客户端与仓库取得联系 使用svn服务 SVN密码管理 SVN的仓库布局和常规命令 分支.合并和 ...

  3. 【Spring】Spring之浅析Spring框架的搭建

    Spring是什么 Spring是一个开源的容器框架,用于配置bean并且维护bean之间关系的.其主要的思想就是IOC(Inversion Of Control,控制反转)或者称作DI(Depend ...

  4. 解决方案,org.hibernate.LazyInitializationException: could not initialize proxy - no Session

    org.hibernate.LazyInitializationException: could not initialize proxy - no Session org.hibernate.pro ...

  5. Git 撤消操作(分布式版本控制系统)

    1.覆盖提交 有时候我们提交完了才发现漏掉了几个文件没有添加,或者提交信息写错了.此时,可以运行带有 --amend 选项的提交命令尝试重新提交. $ git commit --amend 或 # g ...

  6. bootstrap datepicker Uncaught TypeError: Cannot call method 'split' of undefined问题

    这个问题主要是由于date对象不是字符串,不能使用 split 函数,简单处理一下,转换成字符串就可以解决问题: ++++++++++++++++++++++++ parseDate: functio ...

  7. golang ----map按key排序

    实现map遍历有序 1. key有序 思路:对key排序,再遍历key输出value 代码如下:既可以从小到大排序,也可以从大到小排序 package main import ( "fmt& ...

  8. linux的0号进程和1号进程

    linux的 0号进程 和 1 号进程 Linux下有3个特殊的进程,idle进程(PID = 0), init进程(PID = 1)和kthreadd(PID = 2) * idle进程由系统自动创 ...

  9. app-framework学习--官网地址及demo下载地址

    一起学习共同进步,加油..! 官网地址:http://app-framework-software.intel.com/ 下载地址:http://download.csdn.net/detail/ha ...

  10. C++项目參考解答:求Fibonacci数列

    [项目:求Fibonacci数列] Fibonacci数列在计算科学.经济学等领域中广泛使用,其特点是:第一.二个数是1,从第3个数開始,每一个数是其前两个数之和.据此,这个数列为:1 1 2 3 5 ...