1. EM算法-数学基础

2. EM算法-原理详解

3. EM算法-高斯混合模型GMM

4. EM算法-高斯混合模型GMM详细代码实现

5. EM算法-高斯混合模型GMM+Lasso

1. 凸函数

通常在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法就能保证是全局的。

定义1:集合\(R_c\subset E^n\)是凸集,如果对每对点\(\textbf{x}_1,\textbf{x}_2\subset R_c\),每个实数\(\alpha,0<\alpha<1\),点\(\textbf{x}\in R_c\)

\[
\textbf{x}=\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2
\]

定义2:我们称定义在凸集\(R_c\)上的函数\(f(x)\)为凸的,如果对每对\(\textbf{x}_1,\textbf{x}_2 \in R_c\)与每个实数\(\alpha ,0<\alpha<1\),则满足不等式

\[
f[\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2]\leq\alpha f(\textbf{x}_1)+(1-\alpha)f(\textbf{x}_2)
\]

如果\(\textbf{x}_1\neq\textbf{x}_2\),则f(x)是严格凸的。

\[
f[\alpha\textbf{x}_1+(1-\alpha)\textbf{x}_2]<\alpha f(\textbf{x}_1)+(1-\alpha)f(\textbf{x}_2)
\]

2. Jensen不等式

定义1:若\(f(x)\)为区间\(X\)上的凸函数,则\(\forall n \in \mathbb N, n \ge 1,\), 若\(\forall i \in \mathbb N, 1 \le i \le n, x_i \in X, \lambda_i \in \mathbb R,\),且\(\sum^n_{i=1}\lambda_i=1\), 则:

\[
f(\sum_{i=1}^{n} \lambda_i x_i) \le \sum_{i=1}^{n} \lambda_i f(x_i)
\]

推论1:若\(f(x)\)为区间\(R\)上的凸函数,\(g(x): R \rightarrow R\)为一任意函数,\(X\)为一取值范围有限的离散变量,\(E [f \left ( g(X) \right ) ]\)与\(E[g(X)]\)都存在,则:

\[
E [f \left ( g(X) \right ) ] \ge f \left (E[g(X)] \right )
\]

3. 极大似然估计

极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计。

一般说来,事件\(A\)发生的概率与某一未知参数\(\theta\)有关,\(\theta\)的取值不同,则事件\(A\)发生的概率\(P(A|\theta)\)也不同,当我们在一次试验中事件\(A\)发生了,则认为此时的\(\theta\)值应是\(t\)的一切可能取值中使\(P(A|\theta)\)达到最大的那一个,极大似然估计法就是要选取这样的\(t\)值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。

直观的例子:
设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。

1. EM算法-数学基础的更多相关文章

  1. 5. EM算法-高斯混合模型GMM+Lasso

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-GMM代码实现 5. EM算法-高斯混合模型+Lasso 1. 前言 前面几篇博文对EM算法和G ...

  2. 4. EM算法-高斯混合模型GMM详细代码实现

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 EM ...

  3. 3. EM算法-高斯混合模型GMM

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 GM ...

  4. 2. EM算法-原理详解

    1. EM算法-数学基础 2. EM算法-原理详解 3. EM算法-高斯混合模型GMM 4. EM算法-高斯混合模型GMM详细代码实现 5. EM算法-高斯混合模型GMM+Lasso 1. 前言 概率 ...

  5. 机器学习——EM算法

    1 数学基础 在实际中,最小化的函数有几个极值,所以最优化算法得出的极值不确实是否为全局的极值,对于一些特殊的函数,凸函数与凹函数,任何局部极值也是全局极致,因此如果目标函数是凸的或凹的,那么优化算法 ...

  6. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

  7. 学习笔记——EM算法

    EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步组成:E步,求期望(expectation):M步,求 ...

  8. K-Means聚类和EM算法复习总结

    摘要: 1.算法概述 2.算法推导 3.算法特性及优缺点 4.注意事项 5.实现和具体例子 6.适用场合 内容: 1.算法概述 k-means算法是一种得到最广泛使用的聚类算法. 它是将各个聚类子集内 ...

  9. EM算法总结

    EM算法总结 - The EM Algorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法.在之后的MT中的词对齐中也用 ...

随机推荐

  1. Jquery 数组操作(转)

    在jquery中处理JSON数组的情况中遍历用到的比较多,但是用添加移除这些好像不是太多. 今天试过json[i].remove(),json.remove(i)之后都不行,看网页的DOM对象中好像J ...

  2. Android权限详解

    在Android的设计中,资源的访问或者网络连接,要得到这些服务都需要声明其访问权限,否则将无法正常工作.在Android中这样的权限有很多种,这里ATAAW.COM将各类访问权限一一罗列出来,供大家 ...

  3. 微信支付HTTPS服务器证书验证指引

    1. 背景介绍 2. 常见问题 3. 验证证书 4. 安装证书 背景介绍 微信支付使用HTTPS来保证通信安全, 在HTTPS服务器上部署了由权威机构签发的证书, 用于证明微信支付平台的真实身份. 商 ...

  4. CheckStyle检查规则中文翻译

    本文主要介绍CheckStyle 的各个规则配置项目,这个版本的CheckStyle将样式规则分为了以下十六种类型共138条规则: 官方文档地址:http://checkstyle.sourcefor ...

  5. ios面试题来一波

    一.如果让你实现属性的weak,如何实现的? PS: @property 等同于在.h文件中声明实例变量的get/set方法, 而其中property有一些关键字,其中就包括weak,atomic的. ...

  6. numpy 切片

    numpy 中的切片与数组中的切片类似. 数组 [ 起始:终止:步长, 起始:终止:步长, ... ] 所有的切片操作(无论是步长为+的正序,还是步长为 - 的逆序)都是开始位置包含,结束位置不包含( ...

  7. 获取*.jks签名的方法(Android studio)

  8. MongodDB---初识

    NoSQL介绍 一.NoSQL简介 NoSQL,全称是”Not Only Sql”,指的是非关系型的数据库. 非关系型数据库主要有这些特点:非关系型的.分布式的.开源的.水平可扩展的. 原始的目的是为 ...

  9. Angular 2 + 折腾记 :(7) 初步了解表单:模板驱动及数据驱动及脱坑要点

    前言 表单在整个系统中的作用相当重要,这里主要扯下响应表单的实现方式. 首先须要操作表单的模块引入这两个模块. import { FormsModule, ReactiveFormsModule } ...

  10. JavaScript语言精粹--replace()与正则

    今天有人问我repalce(),他那个题目很有意思.我也不会做,于是我就去查,结果发现就是最基础的知识的延伸. 所以啊最基础的知识才是很重要的,千万不能忽略,抓起JS就写代码完全不知到所以然,只知道写 ...