数据规整

首先将评分数据从 ratings.dat 中读出到一个 DataFrame 里:

>>> import pandas as pd

In [2]: import pandas as pd

In [3]: df = pd.read_csv('2014-12-18.csv')

In [4]: df.head()
Out[4]:
user_id item_id behavior_type user_geohash item_category hour
0 100268421 284019855 1 95ridd7 1863 19
1 109802727 56489946 1 NaN 8291 10
2 109802727 56489946 1 NaN 8291 10
3 109802727 266907147 1 99ctk96 9117

 

>>> data = ratings.pivot(index='user_id',columns='movie_id',values='rating')

>>> data[:5]
movie_id  1   2   3   4   5   6 
user_id                                                                       
1          5 NaN NaN NaN NaN NaN ...
2        NaN NaN NaN NaN NaN NaN ...
3        NaN NaN NaN NaN NaN NaN ...
4        NaN NaN NaN NaN NaN NaN ...
5        NaN NaN NaN NaN NaN   2 ...
 

>>> check_size = 1000

>>> check = {}
>>> check_data = data.copy()#复制一份 data 用于检验,以免篡改原数据
>>> check_data = check_data.ix[check_data.count(axis=1)>200]#滤除评价数小于200的用户
>>> for user in np.random.permutation(check_data.index):
        movie = np.random.permutation(check_data.ix[user].dropna().index)[0]
        check[(user,movie)] = check_data.ix[user,movie]
        check_data.ix[user,movie] = np.nan
        check_size -= 1
        if not check_size:
            break
 
>>> corr = check_data.T.corr(min_periods=200)
>>> corr_clean = corr.dropna(how='all')
>>> corr_clean = corr_clean.dropna(axis=1,how='all')#删除全空的行和列
>>> check_ser = Series(check)#这里是被提取出来的 1000 个真实评分
>>> check_ser[:5]
(15593)     4
(23555)     3
(333363)    4
(362355)    5
(533605)    4
dtype: float64
 

参考:

Python 基于协同过滤的推荐

利用python的theano库刷kaggle mnist排行榜

协同过滤CF算法之入门的更多相关文章

  1. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  2. 【Machine Learning】Mahout基于协同过滤(CF)的用户推荐

    一.Mahout推荐算法简介 Mahout算法框架自带的推荐器有下面这些: l  GenericUserBasedRecommender:基于用户的推荐器,用户数量少时速度快: l  GenericI ...

  3. SparkMLlib—协同过滤推荐算法,电影推荐系统,物品喜好推荐

    SparkMLlib-协同过滤推荐算法,电影推荐系统,物品喜好推荐 一.协同过滤 1.1 显示vs隐式反馈 1.2 实例介绍 1.2.1 数据说明 评分数据说明(ratings.data) 用户信息( ...

  4. SimRank协同过滤推荐算法

    在协同过滤推荐算法总结中,我们讲到了用图模型做协同过滤的方法,包括SimRank系列算法和马尔科夫链系列算法.现在我们就对SimRank算法在推荐系统的应用做一个总结. 1. SimRank推荐算法的 ...

  5. 基于MapReduce的(用户、物品、内容)的协同过滤推荐算法

    1.基于用户的协同过滤推荐算法 利用相似度矩阵*评分矩阵得到推荐列表 已经推荐过的置零 2.基于物品的协同过滤推荐算法 3.基于内容的推荐 算法思想:给用户推荐和他们之前喜欢的物品在内容上相似的物品 ...

  6. 推荐系统算法学习(一)——协同过滤(CF) MF FM FFM

    https://blog.csdn.net/qq_23269761/article/details/81355383 1.协同过滤(CF)[基于内存的协同过滤] 优点:简单,可解释 缺点:在稀疏情况下 ...

  7. Spark ML协同过滤推荐算法

    一.简介 协同过滤算法[Collaborative Filtering Recommendation]算法是最经典.最常用的推荐算法.该算法通过分析用户兴趣,在用户群中找到指定用户的相似用户,综合这些 ...

  8. 协同过滤 CF & ALS 及在Spark上的实现

    使用Spark进行ALS编程的例子可以看:http://www.cnblogs.com/charlesblc/p/6165201.html ALS:alternating least squares ...

  9. 基于局部敏感哈希的协同过滤推荐算法之E^2LSH

    需要代码联系作者,不做义务咨询. 一.算法实现 基于p-stable分布,并以‘哈希技术分类’中的分层法为使用方法,就产生了E2LSH算法. E2LSH中的哈希函数定义如下: 其中,v为d维原始数据, ...

随机推荐

  1. 玩转X-CTR100 l STM32F4 l 基础例程printf、LED、蜂鸣器、拨码开关、位带操作

    我造轮子,你造车,创客一起造起来!塔克创新资讯[塔克社区 www.xtark.cn ][塔克博客 www.cnblogs.com/xtark/ ]      本文介绍X-CTR100控制器基础板载资源 ...

  2. Java数字签名算法--RSA

    签名具有的特性: 安全性 抗否认性 数字签名:带有密钥(公钥.私钥)的消息摘要算法(使用私钥进行签名,使用公钥进行验证) 数字签名算法:RSA.DSA.ECDSA 数字签名特性: 验证数据完整性 认证 ...

  3. HTTPS工作原理和TCP握手机制

    1.HTTPS的工作原理 HTTPS在传输数据之前需要客户端(浏览器)与服务端(网站)之间进行一次握手, 在握手过程中将确立双方加密传输数据的密码信息. TLS/SSL协议不仅仅是一套加密传输的协议, ...

  4. Linux上安装编译工具链

    在Linux上安装编译工具链,安装它会依赖dpkg-dev,g++,libc6-dev,make等,所以安装之后这些依赖的工具也都会被安装.ubuntu软件库中这么描述 Informational l ...

  5. C#中datagridview选中行后textbox显示选中的内容

    我想让datagridview中某一行被选中时,textbox中显示选中的值,datagridview的选中模式是整行:this.dataGridView1.SelectionMode = DataG ...

  6. liunx的磁盘管理的基本命令

    df     查看磁盘占用率 du -sh    查看磁盘多大 sudo fdisk -l   查看硬盘信息 sudo mkfs -t ext3 /dev/sdb1    建立文件系统(相当于格式化) ...

  7. MyEclipse2014配置Tomcat开发JavaWeb程序JSP以及Servlet

    http://blog.csdn.net/21aspnet/article/details/21867241   1.安装准备 1).下载安装MyEclipse2014,这已经是最新版本. 2).下载 ...

  8. hdu1224 dp(dp + 栈/父亲数组记录路径)

    题意:给定 n 个城市的有趣度,并给出可以从那些城市飞到那些城市.其中第一个城市即起始城市同样也作为终点城市,有趣度为 0,旅行途中只允许按有趣度从低到高旅行,问旅行的有趣度最大是多少,并输出旅行路径 ...

  9. 数据库表结构转成设计书,PowerDesigner 表格导出为excel

    数据库中的表导入到PowerDesigner中并转为excel文档 1.打开PowerDesigner12,在菜单中按照如下方式进行操作 file->Reverse Engineer->D ...

  10. Documentation/usb/gadget_configfs.txt

    Linux USB gadget configured through configfs 25th April 2013 Overview======== A USB Linux Gadget is ...