async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了。但是这也给我们编程埋下了一些隐患,有时候可能会产生一些我们自己都不知道怎么产生的Bug,特别是如果连线程基础没有理解的情况下,更不知道如何去处理了。那今天我们就来好好看看这两兄弟和他们的叔叔(Task)爷爷(Thread)们到底有什么区别和特点,本文将会对Thread 到 Task 再到 .NET 4.5的 async和 await,这三种方式下的并行编程作一个概括性的介绍包括:开启线程,线程结果返回,线程中止,线程中的异常处理等。

内容索引

创建

1
2
3
4
5
6
7
8
9
static void Main(){
    new Thread(Go).Start();  // .NET 1.0开始就有的
    Task.Factory.StartNew(Go); // .NET 4.0 引入了 TPL
    Task.Run(new Action(Go)); // .NET 4.5 新增了一个Run的方法
}
 
public static void Go(){
    Console.WriteLine("我是另一个线程");
}

  这里面需要注意的是,创建Thread的实例之后,需要手动调用它的Start方法将其启动。但是对于Task来说,StartNew和Run的同时,既会创建新的线程,并且会立即启动它。

线程池

  线程的创建是比较占用资源的一件事情,.NET 为我们提供了线程池来帮助我们创建和管理线程。Task是默认会直接使用线程池,但是Thread不会。如果我们不使用Task,又想用线程池的话,可以使用ThreadPool类。

1
2
3
4
5
6
7
8
9
10
static void Main() {
    Console.WriteLine("我是主线程:Thread Id {0}", Thread.CurrentThread.ManagedThreadId);
    ThreadPool.QueueUserWorkItem(Go);
 
    Console.ReadLine();
}
 
public static void Go(object data) {
    Console.WriteLine("我是另一个线程:Thread Id {0}",Thread.CurrentThread.ManagedThreadId);
}

传入参数

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
static void Main() {
    new Thread(Go).Start("arg1"); // 没有匿名委托之前,我们只能这样传入一个object的参数
 
    new Thread(delegate(){  // 有了匿名委托之后...
        GoGoGo("arg1""arg2""arg3");
    });
 
    new Thread(() => {  // 当然,还有 Lambada
        GoGoGo("arg1","arg2","arg3");
    }).Start();
 
    Task.Run(() =>{  // Task能这么灵活,也是因为有了Lambda呀。
        GoGoGo("arg1""arg2""arg3");
    });
}
 
public static void Go(object name){
    // TODO
}
 
public static void GoGoGo(string arg1, string arg2, string arg3){
    // TODO
}

返回值

  Thead是不能返回值的,但是作为更高级的Task当然要弥补一下这个功能。

1
2
3
4
5
static void Main() {
    // GetDayOfThisWeek 运行在另外一个线程中
    var dayName = Task.Run<string>(() => { return GetDayOfThisWeek(); });
    Console.WriteLine("今天是:{0}",dayName.Result);
}

共享数据

  上面说了参数和返回值,我们来看一下线程之间共享数据的问题。

1
2
3
4
5
6
7
8
9
10
11
12
private static bool _isDone = false;   
static void Main(){
    new Thread(Done).Start();
    new Thread(Done).Start();
}
 
static void Done(){
    if (!_isDone) {
        _isDone = true// 第二个线程来的时候,就不会再执行了(也不是绝对的,取决于计算机的CPU数量以及当时的运行情况)
        Console.WriteLine("Done");
    }
}

 

  线程之间可以通过static变量来共享数据。

线程安全

  我们先把上面的代码小小的调整一下,就知道什么是线程安全了。我们把Done方法中的两句话对换了一下位置 。

1
2
3
4
5
6
7
8
9
10
11
12
13
private static bool _isDone = false;   
static void Main(){
    new Thread(Done).Start();
    new Thread(Done).Start();
    Console.ReadLine();
}
 
static void Done(){
    if (!_isDone) {
       Console.WriteLine("Done"); // 猜猜这里面会被执行几次?
        _isDone = true;
    }
}

  上面这种情况不会一直发生,但是如果你运气好的话,就会中奖了。因为第一个线程还没有来得及把_isDone设置成true,第二个线程就进来了,而这不是我们想要的结果,在多个线程下,结果不是我们的预期结果,这就是线程不安全。

  要解决上面遇到的问题,我们就要用到锁。锁的类型有独占锁,互斥锁,以及读写锁等,我们这里就简单演示一下独占锁。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
private static bool _isDone = false;
private static object _lock = new object();
static void Main(){
    new Thread(Done).Start();
    new Thread(Done).Start();
    Console.ReadLine();
}
 
static void Done(){
    lock (_lock){
        if (!_isDone){
            Console.WriteLine("Done"); // 猜猜这里面会被执行几次?
            _isDone = true;
        }
    }
}

  再我们加上锁之后,被锁住的代码在同一个时间内只允许一个线程访问,其它的线程会被阻塞,只有等到这个锁被释放之后其它的线程才能执行被锁住的代码。

Semaphore 信号量

  我实在不知道这个单词应该怎么翻译,从官方的解释来看,我们可以这样理解。它可以控制对某一段代码或者对某个资源访问的线程的数量,超过这个数量之后,其它的线程就得等待,只有等现在有线程释放了之后,下面的线程才能访问。这个跟锁有相似的功能,只不过不是独占的,它允许一定数量的线程同时访问。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
static SemaphoreSlim _sem = new SemaphoreSlim(3);    // 我们限制能同时访问的线程数量是3
static void Main(){
    for (int i = 1; i <= 5; i++) new Thread(Enter).Start(i);
    Console.ReadLine();
}
 
static void Enter(object id){
    Console.WriteLine(id + " 开始排队...");
    _sem.Wait();
    Console.WriteLine(id + " 开始执行!");         
    Thread.Sleep(1000 * (int)id);              
    Console.WriteLine(id + " 执行完毕,离开!");     
    _sem.Release();
}

  

在最开始的时候,前3个排队之后就立即进入执行,但是4和5,只有等到有线程退出之后才可以执行。

异常处理

  其它线程的异常,主线程可以捕获到么?

1
2
3
4
5
6
7
8
9
10
public static void Main(){
    try{
        new Thread(Go).Start();
    }
    catch (Exception ex){
        // 其它线程里面的异常,我们这里面是捕获不到的。
        Console.WriteLine("Exception!");
    }
}
static void Go() { throw null; }

  那么升级了的Task呢?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
public static void Main(){
    try{
        var task = Task.Run(() => { Go(); });
        task.Wait();  // 在调用了这句话之后,主线程才能捕获task里面的异常
 
        // 对于有返回值的Task, 我们接收了它的返回值就不需要再调用Wait方法了
        // GetName 里面的异常我们也可以捕获到
        var task2 = Task.Run(() => { return GetName(); });
        var name = task2.Result;
    }
    catch (Exception ex){
        Console.WriteLine("Exception!");
    }
}
static void Go() { throw null; }
static string GetName() { throw null; }

一个小例子认识async & await

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
static void Main(string[] args){
    Test(); // 这个方法其实是多余的, 本来可以直接写下面的方法
    // await GetName() 
    // 但是由于控制台的入口方法不支持async,所有我们在入口方法里面不能 用 await
             
    Console.WriteLine("Current Thread Id :{0}", Thread.CurrentThread.ManagedThreadId);
}
 
static async Task Test(){
    // 方法打上async关键字,就可以用await调用同样打上async的方法
    // await 后面的方法将在另外一个线程中执行
    await GetName();
}
 
static async Task GetName(){
    // Delay 方法来自于.net 4.5
    await Task.Delay(1000);  // 返回值前面加 async 之后,方法里面就可以用await了
    Console.WriteLine("Current Thread Id :{0}", Thread.CurrentThread.ManagedThreadId);
    Console.WriteLine("In antoher thread.....");
}

await 的原形

 await后的的执行顺序 

感谢 locus的指正, await 之后不会开启新的线程(await 从来不会开启新的线程),所以上面的图是有一点问题的。

  await 不会开启新的线程,当前线程会一直往下走直到遇到真正的Async方法(比如说HttpClient.GetStringAsync),这个方法的内部会用Task.Run或者Task.Factory.StartNew 去开启线程。也就是如果方法不是.NET为我们提供的Async方法,我们需要自己创建Task,才会真正的去创建线程

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
static void Main(string[] args)
{
    Console.WriteLine("Main Thread Id: {0}\r\n", Thread.CurrentThread.ManagedThreadId);
    Test();
    Console.ReadLine();
}
 
static async Task Test()
{
    Console.WriteLine("Before calling GetName, Thread Id: {0}\r\n", Thread.CurrentThread.ManagedThreadId);
    var name = GetName();   //我们这里没有用 await,所以下面的代码可以继续执行
    // 但是如果上面是 await GetName(),下面的代码就不会立即执行,输出结果就不一样了。
    Console.WriteLine("End calling GetName.\r\n");
    Console.WriteLine("Get result from GetName: {0}", await name);
}
 
static async Task<string> GetName()
{
    // 这里还是主线程
    Console.WriteLine("Before calling Task.Run, current thread Id is: {0}", Thread.CurrentThread.ManagedThreadId);
    return await Task.Run(() =>
    {
        Thread.Sleep(1000);
        Console.WriteLine("'GetName' Thread Id: {0}", Thread.CurrentThread.ManagedThreadId);
        return "Jesse";
    });
}

  我们再来看一下那张图:

  

  1. 进入主线程开始执行
  2. 调用async方法,返回一个Task,注意这个时候另外一个线程已经开始运行,也就是GetName里面的 Task 已经开始工作了
  3. 主线程继续往下走
  4. 第3步和第4步是同时进行的,主线程并没有挂起等待
  5. 如果另一个线程已经执行完毕,name.IsCompleted=true,主线程仍然不用挂起,直接拿结果就可以了。如果另一个线程还同有执行完毕, name.IsCompleted=false,那么主线程会挂起等待,直到返回结果为止。

只有async方法在调用前才能加await么?

1
2
3
4
5
6
7
8
9
10
11
12
13
static void Main(){
    Test();
    Console.ReadLine();
}
 
static async void Test(){
    Task<string> task = Task.Run(() =>{
        Thread.Sleep(5000);
        return "Hello World";
    });
    string str = await task;  //5 秒之后才会执行这里
    Console.WriteLine(str);
}

  答案很明显:await并不是针对于async的方法,而是针对async方法所返回给我们的Task,这也是为什么所有的async方法都必须返回给我们Task。所以我们同样可以在Task前面也加上await关键字,这样做实际上是告诉编译器我需要等这个Task的返回值或者等这个Task执行完毕之后才能继续往下走。

不用await关键字,如何确认Task执行完毕了?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
static void Main(){
    var task = Task.Run(() =>{
        return GetName();
    });
 
    task.GetAwaiter().OnCompleted(() =>{
        // 2 秒之后才会执行这里
        var name = task.Result;
        Console.WriteLine("My name is: " + name);
    });
 
    Console.WriteLine("主线程执行完毕");
    Console.ReadLine();
}
 
static string GetName(){
    Console.WriteLine("另外一个线程在获取名称");
    Thread.Sleep(2000);
    return "Jesse";
}

Task.GetAwaiter()和await Task 的区别?

  • 加上await关键字之后,后面的代码会被挂起等待,直到task执行完毕有返回值的时候才会继续向下执行,这一段时间主线程会处于挂起状态。
  • GetAwaiter方法会返回一个awaitable的对象(继承了INotifyCompletion.OnCompleted方法)我们只是传递了一个委托进去,等task完成了就会执行这个委托,但是并不会影响主线程,下面的代码会立即执行。这也是为什么我们结果里面第一句话会是 “主线程执行完毕”!

Task如何让主线程挂起等待?

  上面的右边是属于没有挂起主线程的情况,和我们的await仍然有一点差别,那么在获取Task的结果前如何挂起主线程呢?

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
static void Main(){
    var task = Task.Run(() =>{
        return GetName();
    });
 
    var name = task.GetAwaiter().GetResult();
    Console.WriteLine("My name is:{0}",name);
 
    Console.WriteLine("主线程执行完毕");
    Console.ReadLine();
}
 
static string GetName(){
    Console.WriteLine("另外一个线程在获取名称");
    Thread.Sleep(2000);
    return "Jesse";
}

  

Task.GetAwait()方法会给我们返回一个awaitable的对象,通过调用这个对象的GetResult方法就会挂起主线程,当然也不是所有的情况都会挂起。还记得我们Task的特性么? 在一开始的时候就启动了另一个线程去执行这个Task,当我们调用它的结果的时候如果这个Task已经执行完毕,主线程是不用等待可以直接拿其结果的,如果没有执行完毕那主线程就得挂起等待了。

await 实质是在调用awaitable对象的GetResult方法

1
2
3
4
5
6
7
8
9
10
11
12
13
static async Task Test(){
    Task<string> task = Task.Run(() =>{
        Console.WriteLine("另一个线程在运行!");  // 这句话只会被执行一次
        Thread.Sleep(2000);
        return "Hello World";
    });
 
    // 这里主线程会挂起等待,直到task执行完毕我们拿到返回结果
    var result = task.GetAwaiter().GetResult(); 
    // 这里不会挂起等待,因为task已经执行完了,我们可以直接拿到结果
    var result2 = await task;    
    Console.WriteLine(str);
}

到此为止,await就真相大白了,欢迎点评。Enjoy Coding! :)

原文链接: http://www.cnblogs.com/jesse2013/p/async-and-await.html

async 和 await的前世今生 (转载)的更多相关文章

  1. async & await 的前世今生(Updated)----代码demo

    using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...

  2. 【转载】async & await 的前世今生(Updated)

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  3. [转载]async & await 的前世今生

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  4. async & await 的前世今生

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  5. async & await 的前世今生(Updated)

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  6. 【转】async & await 的前世今生

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  7. async await的前世今生

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  8. 【转】async & await 的前世今生(Updated)

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

  9. [转]async & await 的前世今生(Updated)

    async 和 await 出现在C# 5.0之后,给并行编程带来了不少的方便,特别是当在MVC中的Action也变成async之后,有点开始什么都是async的味道了.但是这也给我们编程埋下了一些隐 ...

随机推荐

  1. WebService之Axis2(2):复合类型数据的传递

    在实际的应用中,不仅需要使用WebService来传递简单类型的数据,有时也需要传递更复杂的数据,这些数据可以被称为复合类型的数据.数组与类(接口)是比较常用的复合类型.在Axis2中可以直接使用将W ...

  2. [LeetCode] 190. Reverse Bits_Easy tag: Bit Manipulation

    Reverse bits of a given 32 bits unsigned integer. Example: Input: 43261596 Output: 964176192 Explana ...

  3. 机器学习理论基础学习3.1--- Linear classification 线性分类之感知机PLA(Percetron Learning Algorithm)

    一.感知机(Perception) 1.1 原理: 感知机是二分类的线性模型,其输入是实例的特征向量,输出的是事例的类别,分别是+1和-1,属于判别模型. 假设训练数据集是线性可分的,感知机学习的目标 ...

  4. 4.keras实现-->生成式深度学习之用变分自编码器VAE生成图像(mnist数据集和名人头像数据集)

    变分自编码器(VAE,variatinal autoencoder)   VS    生成式对抗网络(GAN,generative adversarial network) 两者不仅适用于图像,还可以 ...

  5. js匿名自执行函数中闭包的高级使用(---------------------------******-----------------------------)

    先看看最常见的一个问题: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...

  6. Data Center Drama 欧拉回路的应用

    这题说的是给了n个点 和m条边, 这m条边是无向的,任务是将这些边变成有向的,并且添加最少的有向边使得这个图中每个点的入度为偶数, 出度为偶数. 我们可以考虑使用欧拉回路来解决这个问题,这样说,假如一 ...

  7. Javassist注解(Annotation)的使用:CXF WebService动态生成

    设计一个对接系统,通过动态模型的增删改触发业务系统相应服务的调用.模型增删改方法动态发布为WebService服务.WebService服务采用CXF发布,动态类生成采用Javassist.由于Web ...

  8. win10如何设置自动睡眠时间(修改电源计划不好用的情况下)

    https://answers.microsoft.com/en-us/windows/forum/windows_10-power/windows-10-sleeping-when-set-not- ...

  9. 阿里云运维部署工具AppDeploy详细教程

    AppDeploy是一个通过SSH实现的命令行工具,可完成应用部署和远程运维管理.当前工具实现为两个版本:普通版(伪代码描述语言)和Python版.Python版使用Python语法规则,可实现您的各 ...

  10. python中hasattr, getattr,setattr及delattr四个方法

    通过一个实例来说明,这四个函数的用法: 首先一个如下的一个简单的类: class Animal(object): def __init__(self,name, zone): self.name = ...