转载于acm之家http://www.acmerblog.com/hdu-1003-Max-Sum-1258.html

Max Sum

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 242353    Accepted Submission(s): 57218


Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
 

Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
 

Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence.
If there are more than one result, output the first one. Output a blank line between two cases.
 

Sample Input

2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
 

Sample Output

Case 1:
14 1 4

Case 2:
7 1 6

题意:求最大连续子序列的和以及这个和所在的区间

思路:初识dp,大问题是求出总序列的最大和,而每个数都有加到前面作为前面已经加好的和的增量和自己独立成为一个“最大和”的选择,在这两个选择中的最大和就是局部的最大和,而保存好第一个最大和,将整个序列的所有局部最大和都求解出来,就能得到全列的最大和

代码如下:

#include<stdio.h>
int main()
{
int i,ca=1,t,s,e,n,x,now,before,max;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
{
scanf("%d",&now);
if(i==1)//初始化
{
max=before=now;//max保留之前算出来的最大和,before存储目前在读入数据前保留的和,now保留读入数据
x=s=e=1;//x用来暂时存储before保留的和的起始位置,当before>max时将赋在s位置,s,e保留最大和的start和end位置
}
else {
if(now>now+before)//如果之前存储的和加上现在的数据比现在的数据小,就把存储的和换成现在的数据,反之就说明数据在递增,可以直接加上
{
before=now;
x=i;//预存的位置要重置
}
else before+=now;
}
if(before>max)//跟之前算出来的最大和进行比较,如果大于,位置和数据就要重置
max=before,s=x,e=i;
}
printf("Case %d:\n%d %d %d\n",ca++,max,s,e);
if(t)printf("\n");
}
return 0;
}

hdu 1003 Max Sum (动态规划)的更多相关文章

  1. HDU 1003 Max Sum (动态规划 最大区间和)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  2. hdu 1003 Max Sum(动态规划)

    解题思路: 本题在给定的集合中找到最大的子集合[子集合:集合的元素的总和,是所有子集合中的最大解.] 结果输出: 最大的子集合的所有元素的和,子集合在集合中的范围区间. 依次对元素相加,存到一个 su ...

  3. HDOJ(HDU).1003 Max Sum (DP)

    HDOJ(HDU).1003 Max Sum (DP) 点我挑战题目 算法学习-–动态规划初探 题意分析 给出一段数字序列,求出最大连续子段和.典型的动态规划问题. 用数组a表示存储的数字序列,sum ...

  4. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  5. hdu 1003 Max Sum (DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1003 Max Sum Time Limit: 2000/1000 MS (Java/Others)   ...

  6. HDU 1003 Max Sum【动态规划求最大子序列和详解 】

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  7. hdu 1003 MAX SUM 简单的dp,测试样例之间输出空行

    测试样例之间输出空行,if(t>0) cout<<endl; 这样出最后一组测试样例之外,其它么每组测试样例之后都会输出一个空行. dp[i]表示以a[i]结尾的最大值,则:dp[i ...

  8. HDU 1003 Max Sum

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. HDU 1003 Max Sum (动规)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Su ...

随机推荐

  1. Linux命令中:rsync和cp之间的区别

    rsync:只拷贝那些更新的文件: cp -u:也可以实现类似效果: 两者都基本可以满足备份的需求: 只是一般情况下,用rsync做这类备份之类的事情,更多见: 在备份的操作中,拷贝,过期文件的删除是 ...

  2. HDU 2222 Keywords Search(AC自动机模板题)

    http://acm.hdu.edu.cn/showproblem.php?pid=2222 题意:给出多个单词,最后再给出一个模式串,求在该模式串中包含了多少个单词. 思路: AC自动机的模板题. ...

  3. 软件测试&安全测试高峰论坛

    Nubia测试以及介绍 基于Cucumber的自动化测试平台 常见Web漏洞之XSS,主要HTML与JS基础.XSS的基础知识与挖掘方法.XSS的利用 自动化测试框架以及测试思路

  4. Codeforces Round #323 (Div. 2) D. Once Again... 乱搞+LIS

    D. Once Again... time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  5. codeforces 251 div2 D. Devu and his Brother 三分

    D. Devu and his Brother time limit per test 1 second memory limit per test 256 megabytes input stand ...

  6. Python matplot的使用(一)

    其实,使用它的直接原因是因为matlab太大了,不方便.另外,就是它是免费的. 在安装这个库的时候,会需要安装一些它所依赖的库,比如six等.从sourceforge上下载,只需按照提示安装完成就行了 ...

  7. python数据持久存储-pickle模块

    pickle模块实现了基本的数据序列和反序列化.pickle模块的序列化操作我们能够将程序中运行的对象信息保存到文件中去,通过pickle模块的反序列化操作,能够从文件中创建上一次程序保存的对象. 接 ...

  8. Python 网络编程和Socket

    2017-07-24 20:43:49 Socket又称"套接字",应用程序通常通过"套接字"向网络发出请求或者应答网络请求.Http协议主要的操作流程是req ...

  9. 深入理解Java中配置环境变量

    深入理解Java中配置环境变量 配置的目的: 本来只在安装JDK的bin目下能运行java.exe,javac.exe,jar.exe,javadoc.exe等Java开发工具包命令,我们现在想让在所 ...

  10. eclipse wtp 没有自动生成 web.xml

    因此,运行servlet 时出错了. 网上查了一下,好像说确实不会自动生成,但是运行应该没有问题的. 幸亏找到了手动生成web.xml的方法,也就不纠结了. http://crunchify.com/ ...