在2.0版本之前,使用Spark必须先创建SparkConf和SparkContext

catalog:目录

Spark2.0中引入了SparkSession的概念,SparkConf、SparkContext 和 SQLContext 都已经被封装在 SparkSession 当中,并且可以通过 builder 的方式创建;可以通过 SparkSession 创建并操作 Dataset 和 DataFrame

SparkSession  The entry point to programming Spark with the Dataset and DataFrame API.

scala> import org.apache.spark.sql.SparkSession
SparkSession SparkSessionExtensions

scala> val spsession=SparkSession.builder().getOrCreate()
spsession: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@577d07b

scala> session.
baseRelationToDataFrame conf emptyDataFrame implicits range sessionState sql streams udf
catalog createDataFrame emptyDataset listenerManager read sharedState sqlContext table version
close createDataset experimental newSession readStream sparkContext stop time

scala> spsession.read.
csv format jdbc json load option options orc parquet schema table text textFile

--------------------------------------------------------------------------------------------------------------------------------------

scala> import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.SparkSession

scala> val lines=spsession.read.textFile("/tmp/person.txt")
lines: org.apache.spark.sql.Dataset[String] = [value: string]

//session的导入隐式转换

scala> import spsession.implicits._
import spsession.implicits._

scala> lines.show
+-----------------+
| value|
+-----------------+
|2,zhangsan,50,866|
| 4,laoliu,522,30|
|5,zhangsan,20,565|
| 6,limi,522,65|
| 1,xiliu,50,6998|
| 7,llihmj,23,565|
+-----------------+

scala> val rowrdd=lines.map(x=>{val arr=x.split("[,]");(arr(0).toLong,arr(1),arr(2).toInt,arr(3).toInt)})
rowrdd: org.apache.spark.sql.Dataset[(Long, String, Int, Int)] = [_1: bigint, _2: string ... 2 more fields]

scala> val personDF=rowrdd.toDF("id","name","age","fv")
personDF: org.apache.spark.sql.DataFrame = [id: bigint, name: string ... 2 more fields]

scala> personDF.printSchema
root
|-- id: long (nullable = false)
|-- name: string (nullable = true)
|-- age: integer (nullable = false)
|-- fv: integer (nullable = false)

scala> personDF.show
+---+--------+---+----+
| id| name|age| fv|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

-------------------------------------------------------------------------

scala> import org.apache.spark.sql.SparkSession
import org.apache.spark.sql.SparkSession

scala> val spsession=SparkSession.builder().getOrCreate()
spsession: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@4c89c98a

scala> val lines=spsession.read.textFile("/tmp/person.txt")
lines: org.apache.spark.sql.Dataset[String] = [value: string]

scala> val rowDF=lines.map(x=>{val arr=x.split("[,]");(arr(0).toLong,arr(1),arr(2).toInt,arr(3).toInt)})
rowDF: org.apache.spark.sql.Dataset[(Long, String, Int, Int)] = [_1: bigint, _2: string ... 2 more fields]

scala> rowDF.printSchema
root
|-- _1: long (nullable = false)
|-- _2: string (nullable = true)
|-- _3: integer (nullable = false)
|-- _4: integer (nullable = false)

scala> rowDF.show
+---+--------+---+----+
| _1| _2| _3| _4|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

scala> rowDF.createTempView("Aaa")

scala> spsession.sql("select * from Aaa").show
+---+--------+---+----+
| _1| _2| _3| _4|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

scala> import spsession.implicits._
import spsession.implicits._

scala> lines.show
+-----------------+
| value|
+-----------------+
|2,zhangsan,50,866|
| 4,laoliu,522,30|
|5,zhangsan,20,565|
| 6,limi,522,65|
| 1,xiliu,50,6998|
| 7,llihmj,23,565|
+-----------------+

scala> val wordDF=lines.flatMap(_.split(","))
wordDF: org.apache.spark.sql.Dataset[String] = [value: string]

scala> wordDF.groupBy($"value" as "word").count
res24: org.apache.spark.sql.DataFrame = [word: string, count: bigint]

scala> wordDF.groupBy($"value" as "word").agg(count("*") as "count")
res30: org.apache.spark.sql.DataFrame = [word: string, count: bigint]

scala> rowDF.groupBy($"_3" as "age").agg(count("*") as "count",avg($"_4") as "avg").show
+---+-----+------+
|age|count| avg|
+---+-----+------+
| 20| 1| 565.0|
| 23| 1| 565.0|
| 50| 2|3932.0|
|522| 2| 47.5|
+---+-----+------+

scala> rowDF.groupBy($"_3" as "age").agg(count("*"),avg($"_4")).show
+---+--------+-------+
|age|count(1)|avg(_4)|
+---+--------+-------+
| 20| 1| 565.0|
| 23| 1| 565.0|
| 50| 2| 3932.0|
|522| 2| 47.5|
+---+--------+-------+

A DataFrame is a Dataset organized into named columns.

scala> val jsonDF=spsession.read.json("/tmp/pdf1json/part*")
jsonDF: org.apache.spark.sql.DataFrame = [age: bigint, fv: bigint ... 1 more field]

scala> spsession.read.json("/tmp/pdf1json/part*").show
+---+----+--------+
|age| fv| name|
+---+----+--------+
| 50|6998| xiliu|
| 50| 866|zhangsan|
| 20| 565|zhangsan|
| 23| 565| llihmj|
+---+----+--------+

scala> spsession.read.format("json").load("/tmp/pdf1json/part*").show
+---+----+--------+
|age| fv| name|
+---+----+--------+
| 50|6998| xiliu|
| 50| 866|zhangsan|
| 20| 565|zhangsan|
| 23| 565| llihmj|
+---+----+--------+

scala> val jsonDF=spsession.read.json("/tmp/pdf1json/part*")
jsonDF: org.apache.spark.sql.DataFrame = [age: bigint, fv: bigint ... 1 more field]

scala> jsonDF.cube("age").mean("fv").show
+----+-------+
| age|avg(fv)|
+----+-------+
| 20| 565.0|
|null| 2248.5|
| 50| 3932.0|
| 23| 565.0|
+----+-------+

scala> jsonDF.cube("age").agg(max("fv"),count("name"),sum("fv")).show
+----+-------+-----------+-------+
| age|max(fv)|count(name)|sum(fv)|
+----+-------+-----------+-------+
| 20| 565| 1| 565|
|null| 6998| 4| 8994|
| 50| 6998| 2| 7864|
| 23| 565| 1| 565|

---------------------------------------------------------------

scala> val lines=spsession.read.textFile("/tmp/person.txt")
lines: org.apache.spark.sql.Dataset[String] = [value: string]

scala> lines.show
+-----------------+
| value|
+-----------------+
|2,zhangsan,50,866|
| 4,laoliu,522,30|
|5,zhangsan,20,565|
| 6,limi,522,65|
| 1,xiliu,50,6998|
| 7,llihmj,23,565|
+-----------------+

scala> val lineds=lines.map(x=>{val arr=x.split(",");(arr(0),arr(1),arr(2),arr(3))})
lineds: org.apache.spark.sql.Dataset[(String, String, String, String)] = [_1: string, _2: string ... 2 more fields]

scala> lineds.show
+---+--------+---+----+
| _1| _2| _3| _4|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

scala> val personDF= lineds.withColumnRenamed("_1","id").withColumnRenamed("_2","name")
personDF: org.apache.spark.sql.DataFrame = [id: string, name: string ... 2 more fields]

scala> personDF.show
+---+--------+---+----+
| id| name| _3| _4|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

scala> personDF.sort($"id" desc).show
warning: there was one feature warning; re-run with -feature for details
+---+--------+---+----+
| id| name| _3| _4|
+---+--------+---+----+
| 7| llihmj| 23| 565|
| 6| limi|522| 65|
| 5|zhangsan| 20| 565|
| 4| laoliu|522| 30|
| 2|zhangsan| 50| 866|
| 1| xiliu| 50|6998|
+---+--------+---+----+

scala> val lines=spsession.read.textFile("/tmp/person.txt")
lines: org.apache.spark.sql.Dataset[String] = [value: string]

scala> lines.map(x=>{val arr= x.split(",");(arr(0),arr(1),arr(2),arr(3))}).toDF("id","name","age","fv").show
+---+--------+---+----+
| id| name|age| fv|
+---+--------+---+----+
| 2|zhangsan| 50| 866|
| 4| laoliu|522| 30|
| 5|zhangsan| 20| 565|
| 6| limi|522| 65|
| 1| xiliu| 50|6998|
| 7| llihmj| 23| 565|
+---+--------+---+----+

SparkSession的更多相关文章

  1. 源码中的哲学——通过构建者模式创建SparkSession

    spark2.2在使用的时候使用的是SparkSession,这个SparkSession创建的时候很明显的使用了创建者模式.通过观察源代码,简单的模拟了下,可以当作以后编码风格的参考: 官方使用 i ...

  2. [Spark SQL] SparkSession、DataFrame 和 DataSet 练习

    本課主題 DataSet 实战 DataSet 实战 SparkSession 是 SparkSQL 的入口,然后可以基于 sparkSession 来获取或者是读取源数据来生存 DataFrameR ...

  3. 【sparkSQL】SparkSession的认识

    https://www.cnblogs.com/zzhangyuhang/p/9039695.html https://www.jianshu.com/p/dea6a78b9dff 在Spark1.6 ...

  4. 【spark】SparkSession的API

    SparkSession是一个比较重要的类,它的功能的实现,肯定包含比较多的函数,这里介绍下它包含哪些函数. builder函数public static SparkSession.Builder b ...

  5. pyspark SparkSession及dataframe基本操作

    from pyspark import SparkContext, SparkConf import os from pyspark.sql.session import SparkSession f ...

  6. scala学习(3)-----wordcount【sparksession】

    参考: spark中文官方网址:http://spark.apachecn.org/#/ https://www.iteblog.com/archives/1674.html 一.知识点: 1.Dat ...

  7. Spark2.0 VS Spark 1.* -------SparkSession的区别

    Spark .0以前版本: val sparkConf = new SparkConf().setAppName("soyo") val spark = new SparkCont ...

  8. SparkSession - Spark SQL 的 入口

    SparkSession - Spark SQL 的 入口 翻译自:https://jaceklaskowski.gitbooks.io/mastering-apache-spark/content/ ...

  9. spark教程(八)-SparkSession

    spark 有三大引擎,spark core.sparkSQL.sparkStreaming, spark core 的关键抽象是 SparkContext.RDD: SparkSQL 的关键抽象是 ...

随机推荐

  1. 不要使用 Dispatcher.Invoke,因为它可能在你的延迟初始化 Lazy 中导致死锁

    WPF 中为了 UI 的跨线程访问,提供了 Dispatcher 线程模型.其 Invoke 方法,无论在哪个线程调用,都可以让传入的方法回到 UI 线程. 然而,如果你在 Lazy 上下文中使用了 ...

  2. cache、session与cookie

    cache.session.cookie的区别 session把数据保存在服务器端,每一个用户都有属于自己的Session,与别人的不冲突 就是说,你登陆系统后,你的信息(如账号.密码等)就会被保存在 ...

  3. GaugeControl 之 DigitalGauge

    https://documentation.devexpress.com/#WindowsForms/clsDevExpressXtraGaugesWinGaugesDigitalDigitalGau ...

  4. 消息队列在VB.NET数据库开发中的应用

    我们先简单的了解一下什么是消息队列(MSMQ)?消息队列是 Windows 2000(NT也有MSMQ,WIN95/98/me/xp不含消息队列服务但是支持客户端的运行)操作系统中通讯的基础,也是用于 ...

  5. jsfl读取xml,图片,并生成swf

    var newdoc = fl.createDocument(); var doc = fl.getDocumentDOM(); var URI = fl.browseForFolderURL(&qu ...

  6. Digester库使用总结

    1.Digester是Apache软件基金会的Jakarta项目下的子Commons项目下的一个开源项目,Digester API包含3个包:org.apache.commons.digester,提 ...

  7. POJ1734无向图求最小环

    题目:http://poj.org/problem?id=1734 方法有点像floyd.若与k直接相连的 i 和 j 在不经过k的情况下已经连通,则有环. 注意区分直接连接和间接连接. * 路径记录 ...

  8. POJ2299逆序对模板(树状数组)

    题目:http://poj.org/problem?id=2299 只能相邻两个交换,所以交换一次只会减少一个逆序对.所以交换次数就是逆序对数. ps:原来树状数组还可以记录后边lowbit位的部分和 ...

  9. Windows下 YOLOv3配置教程(YOLOv3项VS2013平台迁移的方法)

    https://blog.csdn.net/maweifei/article/details/81150489

  10. [记录]js跨域调用mvc ActionResult扩展

    背景 最近2个项目中都用到了js跨域访问的知识,2个项目都需要主站与各个分站之间进行数据交互.状态同步等相关操作.浏览器本身是不允许进行跨域访问,在MVC中我们可以扩展一个方法来实现这个功能.在此大家 ...