Recommender Systems with Deep Learning

Improving Scalability of Personalized Recommendation Systems for Enterprise Knowledge Workers
– Authors: C Verma, M Hart, S Bhatkar, A Parker (2016)
Multi-modal learning for video recommendation based on mobile application usage
– Authors: X Jia, A Wang, X Li, G Xun, W Xu, A Zhang (2016)
Collaborative Filtering with Stacked Denoising AutoEncoders and Sparse Inputs
– Authors: F Strub, J Mary (2016)
Applying Visual User Interest Profiles for Recommendation and Personalisation
– Authors: J Zhou, R Albatal, C Gurrin (2016)
Comparative Deep Learning of Hybrid Representations for Image Recommendations
– Authors: C Lei, D Liu, W Li, Zj Zha, H Li (2016)
Tag-Aware Recommender Systems Based on Deep Neural Networks
– Authors: Y Zuo, J Zeng, M Gong, L Jiao (2016)
Quote Recommendation in Dialogue using Deep Neural Network
– Authors: H Lee, Y Ahn, H Lee, S Ha, S Lee (2016)
Toward Fashion-Brand Recommendation Systems Using Deep-Learning: Preliminary Analysis
– Authors: Y Wakita, K Oku, K Kawagoe (2016)
Word embedding based retrieval model for similar cases recommendation
– Authors: Y Zhao, J Wang, F Wang (2016)
ConTagNet: Exploiting User Context for Image Tag Recommendation
– Authors: Ys Rawat, Ms Kankanhalli (2016)
Wide & Deep Learning for Recommender Systems
– Authors: Ht Cheng, L Koc, J Harmsen, T Shaked, T Chandra… (2016)
On Deep Learning for Trust-Aware Recommendations in Social Networks.
– Authors: S Deng, L Huang, G Xu, X Wu, Z Wu (2016)
A Survey and Critique of Deep Learning on Recommender Systems
– Authors: L Zheng (2016)
Collaborative Filtering and Deep Learning Based Hybrid Recommendation for Cold Start Problem
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Collaborative Filtering and Deep Learning Based Recommendation System For Cold Start Items
– Authors: J Wei, J He, K Chen, Y Zhou, Z Tang (2016)
Deep Neural Networks for YouTube Recommendations
– Authors: P Covington, J Adams, E Sargin (2016)
Towards Latent Context-Aware Recommendation Systems
– Authors: M Unger, A Bar, B Shapira, L Rokach (2016)
Automatic Recommendation Technology for Learning Resources with Convolutional Neural Network
– Authors: X Shen, B Yi, Z Zhang, J Shu, H Liu (2016)
Tag-Aware Personalized Recommendation Using a Deep-Semantic Similarity Model with Negative Sampling
– Authors: Z Xu, C Chen, T Lukasiewicz, Y Miao, X Meng (2016)
Latent Factor Representations for Cold-Start Video Recommendation
– Authors: S Roy, Sc Guntuku (2016)
Convolutional Matrix Factorization for Document Context-Aware Recommendation
– Authors: D Kim, C Park, J Oh, S Lee, H Yu (2016)
Conversational Recommendation System with Unsupervised Learning
– Authors: Y Sun, Y Zhang, Y Chen, R Jin (2016)
RecSys’ 16 Workshop on Deep Learning for Recommender Systems (DLRS)
– Authors: A Karatzoglou, B Hidasi, D Tikk, O Sar (2016, Workshop proceedings)
Ask the GRU: Multi-task Learning for Deep Text Recommendations
– Authors: T Bansal, D Belanger, A Mccallum (2016)
Recurrent Coevolutionary Latent Feature Processes for Continuous-Time Recommendation
– Authors: H Dai, Y Wang, R Trivedi, L Song (2016)
Keynote: Deep learning for audio-based music recommendation
– Authors: S Dieleman (2016)
Tumblr Blog Recommendation with Boosted Inductive Matrix Completion
– Authors: D Shin, S Cetintas, Kc Lee, Is Dhillon (2015)
Deep Collaborative Filtering via Marginalized Denoising Auto-encoder
– Authors: S Li, J Kawale, Y Fu (2015)
Learning Image and User Features for Recommendation in Social Networks
– Authors: X Geng, H Zhang, J Bian, Ts Chua (2015)
UCT-Enhanced Deep Convolutional Neural Network for Move Recommendation in Go
– Authors: S Paisarnsrisomsuk (2015)
A Multi-View Deep Learning Approach for Cross Domain User Modeling in Recommendation Systems
– Authors: A Elkahky, Y Song, X He (2015)
It Takes Two to Tango: An Exploration of Domain Pairs for Cross-Domain Collaborative Filtering
– Authors: S Sahebi, P Brusilovsky (2015)
Latent Context-Aware Recommender Systems
– Authors: M Unger (2015)
Learning Distributed Representations from Reviews for Collaborative Filtering
– Authors: A Almahairi, K Kastner, K Cho, A Courville (2015)
A Collaborative Filtering Approach to Real-Time Hand Pose Estimation
– Authors: C Choi, A Sinha, Jh Choi, S Jang, K Ramani (2015)
Collaborative Deep Learning for Recommender Systems
– Authors: H Wang, N Wang, Dy Yeung (2014)
CARS2: Learning Context-aware Representations for Context-aware Recommendations
– Authors: Y Shi, A Karatzoglou, L Baltrunas, M Larson, A Hanjalic (2014)
Relational Stacked Denoising Autoencoder for Tag Recommendation
– Authors: H Wang, X Shi, Dy Yeung (2014)

DLRS(近三年深度学习应用于推荐系统论文汇总)的更多相关文章

  1. DLRS(深度学习应用于推荐系统论文汇总--2017年8月整理)

    Recommender Systems with Deep Learning Alessandro:ADAAlessandro Suglia, Claudio Greco, Cataldo Musto ...

  2. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  3. 深度学习应用在推荐系统的论文-----A Novel Deep Learning-Based Collaborative Filtering Model for Recommendation System

    1.题目:一种新的基于深度学习的协同过滤推荐系统 2.摘要: 以协同过滤(CF)为基础的模型主要获取用户和项目的交互或者相关性.然而,现有的基于CF的方法只能掌握单一类型的关系,如RBM,它只能获取用 ...

  4. arXiv 2015深度学习年度十大论文

    由康奈尔大学运营维护着的arXiv网站,是一个在学术论文还未被出版时就将之向所有人开放的地方.这里汇聚了无数科学领域中最前沿的研究,机器学习也包括在内.它反映了学术界当前的整体趋势,我们看到,近来发布 ...

  5. python 深度学习 库文件安装出错汇总

    Cython_bbox FairMOT | win10下cython-bbox安装的心酸之路_是阳阳呀的博客-CSDN博客 swig 安装polyiou.py https://blog.csdn.ne ...

  6. 推荐系统遇上深度学习(十)--GBDT+LR融合方案实战

    推荐系统遇上深度学习(十)--GBDT+LR融合方案实战 0.8012018.05.19 16:17:18字数 2068阅读 22568 推荐系统遇上深度学习系列:推荐系统遇上深度学习(一)--FM模 ...

  7. 【深度学习Deep Learning】资料大全

    最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron C ...

  8. 经典书单 —— 语言/算法/机器学习/深度学习/AI/CV/PGM

    0.0 计算机科学 <Lex 与 Yacc> Think Complexity(使用 Python 语言) GitHub - AllenDowney/ThinkComplexity: Co ...

  9. SIGAI深度学习第四集 深度学习简介

    讲授机器学习面临的挑战.人工特征的局限性.为什么选择神经网络.深度学习的诞生和发展.典型的网络结构.深度学习在机器视觉.语音识别.自然语言处理.推荐系统中的应用 大纲: 机器学习面临的挑战 特征工程的 ...

随机推荐

  1. symfony 事务提交

    1. 添加数据 新建一个对象,给对象赋值 $em = $this->getDoctrine()->getManager(); //添加事物 $em->getConnection()- ...

  2. Redis使用示例及在PHP环境中用redis存储session

    在文件夹redis-3.2.0下 1. 启动redis服务 nohup ./src/redis-server redis.conf & 2. 停止服务 #使用客户端 ./src/redis-c ...

  3. linux环境中,查看域名的DNS信息?

    需求说明: 今天在linux主机上,要查询一个域名是在哪个DNS上进行解析的,这个域名下面还有哪些的地址 操作过程: 1.linux环境中通过nslookup命令来进行查看 [deployer@CBS ...

  4. python登录网易163邮箱,爬取邮件

    from common import MyRequests,LoggerUntil,handle_exception myRequests.update_headers({ 'Accept':'tex ...

  5. c# 通过.net自带的chart控件绘制饼图pie chart

    c# 通过.net自带的chart控件绘制饼图pie chart   需要实现的目标是: 1.将数据绑定到pie的后台数据中,自动生成饼图. 2.生成的饼图有详细文字的说明. 具体的实现步骤: > ...

  6. 解决 iOS7 通过tag 找不到 UITableViewCell 的子控件(转)

    转自:http://www.cnblogs.com/waiwaibuzhidao/p/3340400.html 当iOS7问世,程序的世界就混乱了,以前良好的程序,现在是一塌糊涂,于是只能把问题一个一 ...

  7. Java利用数组随机抽取幸运观众

    编写程序,事先将所有观众姓名输入数组,然后获得数组元素的总数量,最后在数组元素中随机抽取元素的下标,根据抽取的下标获得幸运观众的姓名. 思路如下: 定义输入框的按键事件,使用KeyEvent类的get ...

  8. LeetCode_Maximum Subarray | Maximum Product Subarray

    Maximum Subarray 一.题目描写叙述 就是求一个数组的最大子序列 二.思路及代码 首先我们想到暴力破解 public class Solution { public int maxSub ...

  9. Linux+Redis实战教程_day01_常用命令【重点】

    3.常用命令[重点] Linux命令中参数,一般都是无序的.特殊情况下除外 3.1.磁盘管理命令 ls命令:列出目录内容 参数: -a 查询所有文件和文件夹.包含隐藏的 -l 查询详细列表    ls ...

  10. Go面向对象(三)

    go语言中的大多数类型都是值予以,并且都可以包含对应的操作方法,在需要的时候你可以给任意类型增加新方法.二在实现某个接口时,无需从该接口集成,只需要实现该接口要求的所有方法即可.任何类型都可以被any ...