word2vec训练中文模型
-- 这篇文章是一个学习、分析的博客 ---
1.准备数据与预处理
首先需要一份比较大的中文语料数据,可以考虑中文的维基百科(也可以试试搜狗的新闻语料库)。中文维基百科的打包文件地址为
https://dumps.wikimedia.org/zhwiki/latest/zhwiki-latest-pages-articles.xml.bz2
中文维基百科的数据不是太大,xml的压缩文件大约1G左右。首先用 process_wiki_data.py处理这个XML压缩文件,执行:python process_wiki_data.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# process_wiki_data.py 用于解析XML,将XML的wiki数据转换为text格式胡2锦涛!
import logging
import os.path
import sys
from gensim.corpora import WikiCorpus
if __name__ == '__main__':
program = os.path.basename(sys.argv[0])
logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
if len(sys.argv) < 3:
print globals()['__doc__'] % locals()
sys.exit(1)
inp, outp = sys.argv[1:3]
space = " "
i = 0
output = open(outp, 'w')
wiki = WikiCorpus(inp, lemmatize=False, dictionary={})
for text in wiki.get_texts():
output.write(space.join(text) + "\n")
i = i + 1
if (i % 10000 == 0):
logger.info("Saved " + str(i) + " articles")
output.close()
logger.info("Finished Saved " + str(i) + " articles")
得到信息:
2016-08-11 20:39:22,739: INFO: running process_wiki.py zhwiki-latest-pages-articles.xml.bz2 wiki.zh.text
2016-08-11 20:40:08,329: INFO: Saved 10000 articles
2016-08-11 20:40:45,501: INFO: Saved 20000 articles
2016-08-11 20:41:23,659: INFO: Saved 30000 articles
2016-08-11 20:42:01,748: INFO: Saved 40000 articles
2016-08-11 20:42:33,779: INFO: Saved 50000 articles
......
2016-08-11 20:55:23,094: INFO: Saved 200000 articles
2016-08-11 20:56:14,692: INFO: Saved 210000 articles
2016-08-11 20:57:04,614: INFO: Saved 220000 articles
2016-08-11 20:57:57,979: INFO: Saved 230000 articles
2016-08-11 20:58:16,621: INFO: finished iterating over Wikipedia corpus of 232894 documents with 51603419 positions (total 2581444 articles, 62177405 positions before pruning articles shorter than 50 words)
2016-08-11 20:58:16,622: INFO: Finished Saved 232894 articles
Python的话可用jieba完成分词,生成分词文件wiki.zh.text.seg
接着用word2vec工具训练: python train_word2vec_model.py wiki.zh.text.seg wiki.zh.text.model wiki.zh.text.vector
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# train_word2vec_model.py用于训练模型
import logging
import os.path
import sys
import multiprocessing
from gensim.corpora import WikiCorpus
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
if __name__ == '__main__':
program = os.path.basename(sys.argv[0])
logger = logging.getLogger(program)
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s')
logging.root.setLevel(level=logging.INFO)
logger.info("running %s" % ' '.join(sys.argv))
# check and process input arguments
if len(sys.argv) < 4:
print globals()['__doc__'] % locals()
sys.exit(1)
inp, outp1, outp2 = sys.argv[1:4]
model = Word2Vec(LineSentence(inp), size=400, window=5, min_count=5,
workers=multiprocessing.cpu_count())
# trim unneeded model memory = use(much) less RAM
#model.init_sims(replace=True)
model.save(outp1)
model.save_word2vec_format(outp2, binary=False)
运行信息
2016-08-12 09:50:02,586: INFO: running python train_word2vec_model.py wiki.zh.text.seg wiki.zh.text.model wiki.zh.text.vector
2016-08-12 09:50:02,592: INFO: collecting all words and their counts
2016-08-12 09:50:02,592: INFO: PROGRESS: at sentence #0, processed 0 words and 0 word types
2016-08-12 09:50:12,476: INFO: PROGRESS: at sentence #10000, processed 12914562 words and 254662 word types
2016-08-12 09:50:20,215: INFO: PROGRESS: at sentence #20000, processed 22308801 words and 373573 word types
2016-08-12 09:50:28,448: INFO: PROGRESS: at sentence #30000, processed 30724902 words and 460837 word types
...
2016-08-12 09:52:03,498: INFO: PROGRESS: at sentence #210000, processed 143804601 words and 1483608 word types
2016-08-12 09:52:07,772: INFO: PROGRESS: at sentence #220000, processed 149352283 words and 1521199 word types
2016-08-12 09:52:11,639: INFO: PROGRESS: at sentence #230000, processed 154741839 words and 1563584 word types
2016-08-12 09:52:12,746: INFO: collected 1575172 word types from a corpus of 156430908 words and 232894 sentences
2016-08-12 09:52:13,672: INFO: total 278291 word types after removing those with count<5
2016-08-12 09:52:13,673: INFO: constructing a huffman tree from 278291 words
2016-08-12 09:52:29,323: INFO: built huffman tree with maximum node depth 25
2016-08-12 09:52:29,683: INFO: resetting layer weights
2016-08-12 09:52:38,805: INFO: training model with 4 workers on 278291 vocabulary and 400 features, using 'skipgram'=1 'hierarchical softmax'=1 'subsample'=0 and 'negative sampling'=0
2016-08-12 09:52:49,504: INFO: PROGRESS: at 0.10% words, alpha 0.02500, 15008 words/s
2016-08-12 09:52:51,935: INFO: PROGRESS: at 0.38% words, alpha 0.02500, 44434 words/s
2016-08-12 09:52:54,779: INFO: PROGRESS: at 0.56% words, alpha 0.02500, 53965 words/s
2016-08-12 09:52:57,240: INFO: PROGRESS: at 0.62% words, alpha 0.02491, 52116 words/s
2016-08-12 09:52:58,823: INFO: PROGRESS: at 0.72% words, alpha 0.02494, 55804 words/s
2016-08-12 09:53:03,649: INFO: PROGRESS: at 0.94% words, alpha 0.02486, 58277 words/s
2016-08-12 09:53:07,357: INFO: PROGRESS: at 1.03% words, alpha 0.02479, 56036 words/s
......
2016-08-12 19:22:09,002: INFO: PROGRESS: at 98.38% words, alpha 0.00044, 85936 words/s
2016-08-12 19:22:10,321: INFO: PROGRESS: at 98.50% words, alpha 0.00044, 85971 words/s
2016-08-12 19:22:11,934: INFO: PROGRESS: at 98.55% words, alpha 0.00039, 85940 words/s
2016-08-12 19:22:13,384: INFO: PROGRESS: at 98.65% words, alpha 0.00036, 85960 words/s
2016-08-12 19:22:13,883: INFO: training on 152625573 words took 1775.1s, 85982 words/s
2016-08-12 19:22:13,883: INFO: saving Word2Vec object under wiki.zh.text.model, separately None
2016-08-12 19:22:13,884: INFO: not storing attribute syn0norm
2016-08-12 19:22:13,884: INFO: storing numpy array 'syn0' to wiki.zh.text.model.syn0.npy
2016-08-12 19:22:20,797: INFO: storing numpy array 'syn1' to wiki.zh.text.model.syn1.npy
2016-08-12 19:22:40,667: INFO: storing 278291x400 projection weights into wiki.zh.text.vector
测试模型效果:
In [1]: import gensim
In [2]: model = gensim.models.Word2Vec.load("wiki.zh.text.model")
In [3]: model.most_similar(u"足球")
Out[3]:
[(u'\u8054\u8d5b', 0.6553816199302673),
(u'\u7532\u7ea7', 0.6530429720878601),
(u'\u7bee\u7403', 0.5967546701431274),
(u'\u4ff1\u4e50\u90e8', 0.5872289538383484),
(u'\u4e59\u7ea7', 0.5840631723403931),
(u'\u8db3\u7403\u961f', 0.5560152530670166),
(u'\u4e9a\u8db3\u8054', 0.5308005809783936),
(u'allsvenskan', 0.5249762535095215),
(u'\u4ee3\u8868\u961f', 0.5214947462081909),
(u'\u7532\u7ec4', 0.5177896022796631)]
In [4]: result = model.most_similar(u"足球")
In [5]: for e in result:
print e[0], e[1]
....:
联赛 0.65538161993
甲级 0.653042972088
篮球 0.596754670143
俱乐部 0.587228953838
乙级 0.58406317234
足球队 0.556015253067
亚足联 0.530800580978
allsvenskan 0.52497625351
代表队 0.521494746208
甲组 0.51778960228
In [6]: result = model.most_similar(u"男人")
In [7]: for e in result:
print e[0], e[1]
....:
女人 0.77537125349
家伙 0.617369174957
妈妈 0.567102909088
漂亮 0.560832381248
잘했어 0.540875017643
谎言 0.538448691368
爸爸 0.53660941124
傻瓜 0.535608053207
예쁘다 0.535151124001
mc刘 0.529670000076
In [8]: result = model.most_similar(u"女人")
In [9]: for e in result:
print e[0], e[1]
....:
男人 0.77537125349
我的某 0.589010596275
妈妈 0.576344847679
잘했어 0.562340974808
美丽 0.555426716805
爸爸 0.543958246708
新娘 0.543640494347
谎言 0.540272831917
妞儿 0.531066179276
老婆 0.528521537781
In [10]: result = model.most_similar(u"青蛙")
In [11]: for e in result:
print e[0], e[1]
....:
老鼠 0.559612870216
乌龟 0.489831030369
蜥蜴 0.478990525007
猫 0.46728849411
鳄鱼 0.461885392666
蟾蜍 0.448014199734
猴子 0.436584025621
白雪公主 0.434905380011
蚯蚓 0.433413207531
螃蟹 0.4314712286
In [12]: result = model.most_similar(u"姨夫")
In [13]: for e in result:
print e[0], e[1]
....:
堂伯 0.583935439587
祖父 0.574735701084
妃所生 0.569327116013
内弟 0.562012672424
早卒 0.558042645454
曕 0.553856015205
胤祯 0.553288519382
陈潜 0.550716996193
愔之 0.550510883331
叔父 0.550032019615
In [14]: result = model.most_similar(u"衣服")
In [15]: for e in result:
print e[0], e[1]
....:
鞋子 0.686688780785
穿着 0.672499775887
衣物 0.67173999548
大衣 0.667605519295
裤子 0.662670075893
内裤 0.662210345268
裙子 0.659705817699
西装 0.648508131504
洋装 0.647238850594
围裙 0.642895817757
In [16]: result = model.most_similar(u"公安局")
In [17]: for e in result:
print e[0], e[1]
....:
司法局 0.730189085007
公安厅 0.634275555611
公安 0.612798035145
房管局 0.597343325615
商业局 0.597183346748
军管会 0.59476184845
体育局 0.59283208847
财政局 0.588721752167
戒毒所 0.575558543205
新闻办 0.573395550251
In [18]: result = model.most_similar(u"铁道部")
In [19]: for e in result:
print e[0], e[1]
....:
盛光祖 0.565509021282
交通部 0.548688530922
批复 0.546967327595
刘志军 0.541010737419
立项 0.517836689949
报送 0.510296344757
计委 0.508456230164
水利部 0.503531932831
国务院 0.503227233887
经贸委 0.50156635046
In [20]: result = model.most_similar(u"清华大学")
In [21]: for e in result:
print e[0], e[1]
....:
北京大学 0.763922810555
化学系 0.724210739136
物理系 0.694550514221
数学系 0.684280991554
中山大学 0.677202701569
复旦 0.657914161682
师范大学 0.656435549259
哲学系 0.654701948166
生物系 0.654403865337
中文系 0.653147578239
In [22]: result = model.most_similar(u"卫视")
In [23]: for e in result:
print e[0], e[1]
....:
湖南 0.676812887192
中文台 0.626506924629
収蔵 0.621356606483
黄金档 0.582251906395
cctv 0.536769032478
安徽 0.536752820015
非同凡响 0.534517168999
唱响 0.533438682556
最强音 0.532605051994
金鹰 0.531676828861
In [24]: result = model.most_similar(u"习1近平") //这里博客作了判断,不让包含 有国家领导人的信息
In [25]: for e in result:
print e[0], e[1]
....:
胡2锦涛 0.809472680092
江3泽民 0.754633367062
李4克强 0.739740967751
贾5庆林 0.737033963203
曾6庆红 0.732847094536
吴7邦国 0.726941585541
总书记 0.719057679176
李8瑞环 0.716384887695
温9家宝 0.711952567101
王10岐山 0.703570842743
In [26]: result = model.most_similar(u"林丹")
In [27]: for e in result:
print e[0], e[1]
....:
黄综翰 0.538035452366
蒋燕皎 0.52646958828
刘鑫 0.522252976894
韩晶娜 0.516120731831
王晓理 0.512289524078
王适 0.508560419083
杨影 0.508159279823
陈跃 0.507353425026
龚智超 0.503159761429
李敬元 0.50262516737
In [28]: result = model.most_similar(u"语言学")
In [29]: for e in result:
print e[0], e[1]
....:
社会学 0.632598280907
人类学 0.623406708241
历史学 0.618442356586
比较文学 0.604823827744
心理学 0.600066184998
人文科学 0.577783346176
社会心理学 0.575571238995
政治学 0.574541330338
地理学 0.573896467686
哲学 0.573873817921
In [30]: result = model.most_similar(u"计算机")
In [31]: for e in result:
print e[0], e[1]
....:
自动化 0.674171924591
应用 0.614087462425
自动化系 0.611132860184
材料科学 0.607891201973
集成电路 0.600370049477
技术 0.597518980503
电子学 0.591316461563
建模 0.577238917351
工程学 0.572855889797
微电子 0.570086717606
In [32]: model.similarity(u"计算机", u"自动化")
Out[32]: 0.67417196002404789
In [33]: model.similarity(u"女人", u"男人")
Out[33]: 0.77537125129824813
In [34]: model.doesnt_match(u"早餐 晚餐 午餐 中心".split())
Out[34]: u'\u4e2d\u5fc3'
In [35]: print model.doesnt_match(u"早餐 晚餐 午餐 中心".split())
中心
来源:https://www.zybuluo.com/hanxiaoyang/note/472184
word2vec训练中文模型的更多相关文章
- 使用word2vec训练中文词向量
https://www.jianshu.com/p/87798bccee48 一.文本处理流程 通常我们文本处理流程如下: 1 对文本数据进行预处理:数据预处理,包括简繁体转换,去除xml符号,将单词 ...
- Windows下基于python3使用word2vec训练中文维基百科语料(二)
在上一篇对中文维基百科语料处理将其转换成.txt的文本文档的基础上,我们要将为文本转换成向量,首先都要对文本进行预处理 步骤四:由于得到的中文维基百科中有许多繁体字,所以我们现在就是将繁体字转换成简体 ...
- Windows下基于python3使用word2vec训练中文维基百科语料(三)
对前两篇获取到的词向量模型进行使用: 代码如下: import gensim model = gensim.models.Word2Vec.load('wiki.zh.text.model') fla ...
- Windows下基于python3使用word2vec训练中文维基百科语料(一)
在进行自然语言处理之前,首先需要一个语料,这里选择维基百科中文语料,由于维基百科是 .xml.bz2文件,所以要将其转换成.txt文件,下面就是相关步骤: 步骤一:下载维基百科中文语料 https:/ ...
- 文本分布式表示(二):用tensorflow和word2vec训练词向量
看了几天word2vec的理论,终于是懂了一些.理论部分我推荐以下几篇教程,有博客也有视频: 1.<word2vec中的数学原理>:http://www.cnblogs.com/pegho ...
- tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用——模型层次太深,或者太复杂训练时候都不会收敛
tflearn 中文汉字识别,训练后模型存为pb给TensorFlow使用. 数据目录在data,data下放了汉字识别图片: data$ ls0 1 10 11 12 13 14 15 ...
- word2vec + transE 知识表示模型
本文主要工作是将文本方法 (word2vec) 和知识库方法 (transE) 相融合作知识表示,即将外部知识库信息(三元组)加入word2vec语言模型,作为正则项指导词向量的学习,将得到的词向量用 ...
- PocketSphinx语音识别系统语言模型的训练和声学模型的改进
PocketSphinx语音识别系统语言模型的训练和声学模型的改进 zouxy09@qq.com http://blog.csdn.net/zouxy09 关于语音识别的基础知识和sphinx的知识, ...
- word2vec训练&IC分词(待)
参考http://www.52nlp.cn/%E4%B8%AD%E8%8B%B1%E6%96%87%E7%BB%B4%E5%9F%BA%E7%99%BE%E7%A7%91%E8%AF%AD%E6%96 ...
随机推荐
- 6.2 dubbo在spring中自定义xml标签源码解析
在6.1 如何在spring中自定义xml标签中我们看到了在spring中自定义xml标签的方式.dubbo也是这样来实现的. 一 META_INF/dubbo.xsd 比较长,只列出<dubb ...
- json传输二进制的方案【转】
本文转自:http://wiyi.org/binary-to-string.html json 是一种很简洁的协议,但可惜的是,它只能传递基本的数型(int,long,string等),但不能传递by ...
- Spring系列:Scheduled注解学习笔记
一.试验代码 //@Scheduled(fixedRate = 5000) //@Scheduled(fixedDelay = 5000) @Scheduled(cron ="*/5 * * ...
- Count and Say leetcode java
题目: The count-and-say sequence is the sequence of integers beginning as follows: 1, 11, 21, 1211, 11 ...
- Reverse Words in a String leetcode java
题目: Given an input string, reverse the string word by word. For example, Given s = "the sky is ...
- 阿里巴巴Java开发规约插件全球首发!(转)
https://mp.weixin.qq.com/s?__biz=MzI0NTE4NjA0OQ==&mid=2658355901&idx=1&sn=3169172bfc6819 ...
- 简单介绍Ceph分布式存储集群
在规划Ceph分布式存储集群环境的时候,对硬件的选择很重要,这关乎整个Ceph集群的性能,下面梳理到一些硬件的选择标准,可供参考: 1)CPU选择 Ceph metadata server会动态的重新 ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(二十四)Structured Streaming:Encoder
一般情况下我们在使用Dataset<Row>进行groupByKey时,你会发现这个方法最后一个参数需要一个encoder,那么这些encoder如何定义呢? 一般数据类型 static ...
- jssor/slider图片的问题
用jssor/slider这个控件,在显示图片的时候,每张图片都被拉伸到最大的图片的宽度和高度,导致变形,怎么处理? [答案] Yes. With no u="image" ima ...
- hdu Boring count(BestCode round #11)
Boring count Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...