要判断Stochastic Gradient Descent是否收敛,可以像Batch Gradient Descent一样打印出iteration的次数和Cost的函数关系图,然后判断曲线是否呈现下降且区域某一个下限值的状态。由于训练样本m值很大,而对于每个样本,都会更新一次θ向量(权重向量),因此可以在每次更新θ向量前,计算当时状况下的cost值,然后每1000次迭代后,计算一次average cost的值。然后打印出iteration和cost之间的关系。

1、不同曲线图代表的含义及应对策略

可能会看到的曲线图有如下几种:

情况1

这样的曲线说明算法已经收敛。

如果我们使用小一点的学习率α,那么可能最终会训练到比较好的θ向量(红色线)

但是小的学习率也意味着更长的训练时间。

情况2

如果我们不是1000次迭代计算并打印一次,而是5000次迭代后才计算并打印一次。那么曲线可能会更加平滑一些(绿色线)。

情况3

如果我们得到的曲线(1000次迭代并打印)是波动很剧烈,并且没有显示任何下降趋势,如下图:

那么有两种可能,一噪声太剧烈而无法看出算法收敛的趋势;二算法没有收敛。

这种情况下,我们可以调整打印的步长(比如5000次迭代才计算并打印一次),那么可能会得到两种不同的曲线(如下两幅图所示)。

如果得到得是类似这条红色的曲线,那么说明算法已经收敛或已经表现出收敛的趋势了。如果得到的是如下图所示的绿色的线,说明算法没有收敛。

情况4

还有一种情况,就是曲线不但没有呈现下降的趋势,反而出现了上升的趋势,如下图:

这说明学习率α设置得过大,需要调小学习率。

2、学习率的设置

当学习率比较小的时候,可以训练出更优的权重向量。但是较小的学习率也意味着更长的训练时间,而且如果是非凸问题则还有可能会陷入局部解中。那么,如果使用动态递减的学习率(即在学习开始之初,学习率较大,然后根据迭代次数的增加,学习率逐渐减小)也许会好一些。这样我们可以用一个式子来按照迭代次数调整学习率,例如:

常量1和常量2的目的是为了保证学习率在一个正常的范围内(不至于当循环次数很高或很低时,学习率会变得过大或过小)。

通过调整学习率(手工或如上式自动调整),就可以控制算法收敛的速度。

Reference:

Andrew Ng Stochastic Gradient Descent Convergence (12 min)

Stochastic Gradient Descent收敛判断及收敛速度的控制的更多相关文章

  1. Stochastic Gradient Descent

    一.从Multinomial Logistic模型说起 1.Multinomial Logistic 令为维输入向量; 为输出label;(一共k类); 为模型参数向量: Multinomial Lo ...

  2. Stochastic Gradient Descent 随机梯度下降法-R实现

    随机梯度下降法  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 批量梯度下降法在权值更新前对所有样本汇总 ...

  3. 几种梯度下降方法对比(Batch gradient descent、Mini-batch gradient descent 和 stochastic gradient descent)

    https://blog.csdn.net/u012328159/article/details/80252012 我们在训练神经网络模型时,最常用的就是梯度下降,这篇博客主要介绍下几种梯度下降的变种 ...

  4. FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MINI-BATCH LEARNING. WHAT IS THE DIFFERENCE?

    FITTING A MODEL VIA CLOSED-FORM EQUATIONS VS. GRADIENT DESCENT VS STOCHASTIC GRADIENT DESCENT VS MIN ...

  5. 机器学习-随机梯度下降(Stochastic gradient descent)

    sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...

  6. 基于baseline、svd和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.3部分内容(其余部分会陆续补充上来).koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文章目 ...

  7. 基于baseline和stochastic gradient descent的个性化推荐系统

    文章主要介绍的是koren 08年发的论文[1],  2.1 部分内容(其余部分会陆续补充上来). koren论文中用到netflix 数据集, 过于大, 在普通的pc机上运行时间很长很长.考虑到写文 ...

  8. Gradient Descent 和 Stochastic Gradient Descent(随机梯度下降法)

    Gradient Descent(Batch Gradient)也就是梯度下降法是一种常用的的寻找局域最小值的方法.其主要思想就是计算当前位置的梯度,取梯度反方向并结合合适步长使其向最小值移动.通过柯 ...

  9. 随机梯度下降法(Stochastic gradient descent, SGD)

    BGD(Batch gradient descent)批量梯度下降法:每次迭代使用所有的样本(样本量小)    Mold 一直在更新 SGD(Stochastic gradientdescent)随机 ...

随机推荐

  1. How to get the value of a form element : check box and radio button

    Getting a radio element and it’s checked value Radio buttons in a form can be grouped together using ...

  2. foxmail怎么设置个性签名

    foxmail是我们日常使用的邮件客户端之一,相信很多的朋友都在使用.那么,我们在发邮件的时候,很多朋友都会使用一个个性签名,那么对于foxmail的邮件签名怎么来设置呢?今天笔者就来给大家分享一下, ...

  3. 在spring boot微服务中使用JWS发布webService

    发布时间:2018-11-22   技术:Java+spring+maven   概述 在springboot微服务中使用JWS发布webService,在服务启动时自动发布webservice接口. ...

  4. macbook上安装homestead

    参考资料: 1:https://solarhell.com/post/2016/04/homestead 2:https://phphub.org/topics/491 3:http://larave ...

  5. ios中PagedFlowView的用法

    下载地址 引入PagedFlowView.h  PagedFlowView.m文件 #import <UIKit/UIKit.h> #import "PagedFlowView. ...

  6. SoapUI利用Groovy把外部数据加载到request中

    默认已经用Groovy把外部数据给读取出来了,关键是读取出来后,如何加载到request中去?这里提供了两种方法:1.该Groovy脚本的名称是"setUp" def num = ...

  7. Redis学习之路(005)- redis内存数据库C客户端hiredis API 中文说明

    A)编译安装 make make install (/usr/local) make install PREFIX=$HOME/progs(可以自由指定安装路径) B)同步的API接口 redisCo ...

  8. Ubuntu下架设FTP服务器(转)

    Ubuntu下架设FTP服务器 Linux下提供了很多的ftp服务器,这里我选用了安全,快速,简单的vsftpd作为FTP服务器.本文是我在自己的Ubuntu 10.10 -32 位系统下搭建的.搭建 ...

  9. 从前端的UI开始

    MVC分离的比较好,开发顺序没有特别要求,先开发哪一部分都可以,这次我们主要讲解前端UI的部分. ASP.NET MVC抛弃了WebForm的一些特有的习惯,例如服务器端控件,ViewState这些东 ...

  10. Swift 值类型/引用类型

    1.值类型/引用类型 在 Swift 语言中,所有的类型都可以被分为 "值类型" 或者 "引用类型",可以将其理解为函数参数传递的方式. 值类型表示的是将它传递 ...