链接

大意: 给定n种珠子, 第i种有$a_i$个, 求将珠子穿成项链, 使得能使切开后的项链回文的切口尽量多

若有一种以上珠子为奇数, 显然不能为回文, 否则最大值一定是$gcd(a_1,a_2,...,a_n)$

若有一个奇数, 直接分成$gcd(a_1,a_2,...,a_n)$块, 每块内奇数放中间, 其余对称分

无奇数的话, $gcd(a_1,a_2,...,a_n)$一定是2的倍数, 可以将2块和为1块, 两块间对称分即可

#include <iostream>
#include <algorithm>
#include <cstdio>
#define PER(i,a,n) for(int i=n;i>=a;--i)
#define REP(i,a,n) for(int i=a;i<=n;++i)
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;} const int N = 4e5+10, INF = 0x3f3f3f3f;
int n, cnt, ans, sum;
int a[N];
char buf[N]; int main() {
scanf("%d", &n);
REP(i,1,n) {
scanf("%d", a+i);
ans = gcd(ans, a[i]);
cnt += a[i]&1;
sum += a[i];
}
if (cnt>1) {
puts("0");
REP(i,1,n) REP(j,1,a[i]) putchar(i-1+'a');
return puts(""),0;
}
if (cnt) {
int len = sum/ans, cur = len/2+1;
REP(i,1,n) if (a[i]&1) {
buf[cur] = i-1+'a';
++cur; break;
}
REP(i,1,n) REP(j,1,a[i]/ans/2) buf[cur]=buf[len-cur+1]=i-1+'a',++cur;
printf("%d\n", ans);
REP(i,1,ans) REP(j,1,len) putchar(buf[j]);
return puts(""),0;
}
int len = sum/ans*2, cur = len/2+1;
REP(i,1,n) REP(j,1,a[i]/ans) buf[cur]=buf[len-cur+1]=i-1+'a',++cur;
printf("%d\n", ans);
REP(i,1,ans/2) REP(j,1,len) putchar(buf[j]);
puts("");
}

Necklace CodeForces - 613C (构造)的更多相关文章

  1. B - Save the problem! CodeForces - 867B 构造题

    B - Save the problem! CodeForces - 867B 这个题目还是很简单的,很明显是一个构造题,但是早训的时候脑子有点糊涂,想到了用1 2 来构造, 但是去算这个数的时候算错 ...

  2. Johnny Solving CodeForces - 1103C (构造,图论)

    大意: 无向图, 无重边自环, 每个点度数>=3, 要求完成下面任意一个任务 找一条结点数不少于n/k的简单路径 找k个简单环, 每个环结点数小于n/k, 且不为3的倍数, 且每个环有一个特殊点 ...

  3. Codeforces 746G(构造)

                                                                                                      G. ...

  4. Codeforces 1188A 构造

    题意:给你一颗树,树的边权都是偶数,并且边权各不相同.你可以选择树的两个叶子结点,并且把两个叶子结点之间的路径加上一个值(可以为负数),问是否可以通过这种操作构造出这颗树?如果可以,输出构造方案.初始 ...

  5. C - Long Beautiful Integer codeforces 1269C 构造

    题解: 这里的m一定是等于n的,n为数最大为n个9,这n个9一定满足条件,根据题目意思,前k个一定是和原序列前k个相等,因此如果说我们构造出来的大于等于原序列,直接输出就可以了,否则,由于后m-k个一 ...

  6. Dividing the numbers CodeForces - 899C (构造)

    大意: 求将[1,n]划分成两个集合, 且两集合的和的差尽量小. 和/2为偶数最小差一定为0, 和/2为奇数一定为1. 显然可以通过某个前缀和删去一个数得到. #include <iostrea ...

  7. Codeforces 772C 构造 数学 + dp + exgcd

    首先我们能注意到两个数x, y (0 < x , y < m) 乘以倍数互相可达当且仅当gcd(x, m) == gcd(y, m) 然后我们可以发现我们让gcd(x, m)从1开始出发走 ...

  8. Jzzhu and Apples CodeForces - 449C (构造,数学)

    大意: 求从[1,n]范围选择尽量多的数对, 使得每对数的gcd>1 考虑所有除2以外且不超过n/2的素数p, 若p倍数可以选择的有偶数个, 直接全部划分即可 有奇数个的话, 余下一个2*p不划 ...

  9. Gluttony CodeForces - 892D (构造,思维)

    题面: You are given an array a with n distinct integers. Construct an array b by permuting a such that ...

随机推荐

  1. .NET,ASP.NET,ASP.NET MVC 之间的区别

    https://www.cnblogs.com/wwym/p/5555772.html

  2. 20145328《网络对抗技术》Final

    系内选拔赛write-up 1 信息隐藏 第一题图片藏东西,后缀名改txt,没有发现,改rar,发现压缩包内存在key.txt,解压提示存在密码,尝试使用修复,得到key.txt,打开获取flag,S ...

  3. 20145331魏澍琛《网络对抗》Exp8 Web基础

    20145331魏澍琛<网络对抗>Exp8 Web基础 实践内容: 1.简单的web前端页面(HTML.CSS等) 2.简单的web后台数据处理(PHP) 3.Mysql数据库 4.一个简 ...

  4. VC++ PathFindFileName函数,由文件路径获得文件名

    1.PathFindFileName函数的作用是返回路径中的文件名. PTSTR PathFindFileName( __in PTSTR pPath ); pPath是指向文件路径字符串的指针,函数 ...

  5. HTML基本格式

    <html> <head> <title>放置文章标题</title> <meta http-equiv="Content-Type&q ...

  6. C# 图片和64位编码的转换

    /* 将图片转换为64位编码 */ //找到文件夹 System.IO.DirectoryInfo dd = new System.IO.DirectoryInfo("C://qq" ...

  7. 记录openwrt下补丁apply的过程中出错,但是可以单独打上该补丁

    背景: 在openwrt的编译框架下无法正确打上补丁,而单独使用git却可以成功 这个补丁到底与其它补丁有何不同? 该补丁的生成的过程解析: 旧文件:vi 打开旧文件会提示no newline at ...

  8. CF873B Balanced Substring

    1到n内0,1个数相同的个数的最长字串 \(i>=j\) \[1的个数=0的个数\] \[sum[i]-sum[j-1]=i-(j-1) - (sum[i]-sum[j-1])\] 这里把\(( ...

  9. LOJ#2170. 「POI2011」木棍 Sticks

    题目链接 题意就是给你一堆线段,然后线段有长度和颜色,让你选三条组成一个三角形,这三条线段颜色不能一样 题解: 做法:贪心 首先按照长度给这些线段排序一遍 然后贪心的去选,对于已经选出来同种颜色的,就 ...

  10. Unity3D学习笔记(二十一):InputFiled、Dropdown、Scroll Rect、Mask

    InputFiled组件(输入框) Text Component(显示内容):显示输入内容的Text的组件 Text(输入内容):输入的文本内容 Character Limit:字符数量限值,0是无限 ...