参考:

TensorFlow 自定义模型导出:将 .ckpt 格式转化为 .pb 格式

TensorFlow 模型保存与恢复

snpe

tensorflow 模型前向传播 保存ckpt  tensorbard查看 ckpt转pb  pb 转snpe dlc 实例

log文件

输入节点 图像高度 图像宽度 图像通道数

input0 6,6,3

输出节点

--out_node add

snpe-tensorflow-to-dlc --graph ./simple_snpe_log/model200.pb -i input0 6,6,3 --out_node add

#coding:utf-8
#http://blog.csdn.net/zhuiqiuk/article/details/53376283
#http://blog.csdn.net/gan_player/article/details/77586489
from __future__ import absolute_import, unicode_literals
import tensorflow as tf
import shutil
import os.path
from tensorflow.python.framework import graph_util
import mxnet as mx
import numpy as np
import random
import cv2
from time import sleep
from easydict import EasyDict as edict
import logging
import math
import tensorflow as tf
import numpy as np def FullyConnected(input, fc_weight, fc_bias, name):
fc = tf.matmul(input, fc_weight) + fc_bias
return fc def inference(body, name_class,outchannel):
wkernel = 3
inchannel = body.get_shape()[3].value
conv_weight = np.arange(wkernel * wkernel * inchannel * outchannel,dtype=np.float32).reshape((outchannel,inchannel,wkernel,wkernel))
conv_weight = conv_weight / (outchannel*inchannel*wkernel*wkernel)
print("conv_weight ", conv_weight)
conv_weight = conv_weight.transpose(2,3,1,0)
conv_weight = tf.Variable(conv_weight, dtype=np.float32, name = "conv_weight")
body = tf.nn.conv2d(body, conv_weight, strides=[1, 1, 1, 1], padding='SAME', name = "conv0")
conv = body
conv_shape = body.get_shape()
dim = conv_shape[1].value * conv_shape[2].value * conv_shape[3].value
body = tf.reshape(body, [1, dim], name = "fc0")
fc_weight = np.ones((dim, name_class))
fc_bias = np.zeros((1, name_class))
fc_weight = tf.Variable(fc_weight, dtype=np.float32, name="fc_weight")
fc_bias = tf.Variable(fc_bias, dtype=np.float32, name="fc_bias")
# tf.constant(100,dtype=np.float32, shape=(body.get_shape()[1] * body.get_shape()[2] * body.get_shape()[3], name_class])
# fc_bias = tf.constant(10, dtype=np.float32, shape=(1, name_class])
body = FullyConnected(body, fc_weight, fc_bias, "fc0")
return conv, body export_dir = "simple_snpe_log"
def saveckpt():
height = 6
width = 6
inchannel = 3
outchannel = 3
graph = tf.get_default_graph()
with tf.Graph().as_default():
input_image = tf.placeholder("float", [1, height, width, inchannel], name = "input0")
conv, logdit = inference(input_image,10,outchannel)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
img = np.arange(height * width * inchannel, dtype=np.float32).reshape((1,inchannel,height,width)) \
/ (1 * inchannel * height * width) * 255.0 - 127.5
print("img",img)
img = img.transpose(0,2,3,1)
import time
since = time.time()
fc = sess.run(logdit,{input_image:img})
conv = sess.run(conv, {input_image: img})
time_elapsed = time.time() - since
print("tf inference time ", str(time_elapsed))
print("conv", conv.transpose(0, 2, 3, 1))
print("fc", fc)
#np.savetxt("tfconv.txt",fc)
#print( "fc", fc.transpose(0,3,2,1))
#np.savetxt("tfrelu.txt",fc.transpose(0,3,2,1)[0][0]) # #save ckpt
export_dir = "simple_snpe_log"
saver = tf.train.Saver()
step = 200
# if os.path.exists(export_dir):
# os.system("rm -rf " + export_dir)
if not os.path.isdir(export_dir): # Create the log directory if it doesn't exist
os.makedirs(export_dir) checkpoint_file = os.path.join(export_dir, 'model.ckpt')
saver.save(sess, checkpoint_file, global_step=step) def LoadModelToTensorBoard():
graph = tf.get_default_graph()
checkpoint_file = os.path.join(export_dir, 'model.ckpt-200.meta')
saver = tf.train.import_meta_graph(checkpoint_file)
print(saver)
summary_write = tf.summary.FileWriter(export_dir , graph)
print(summary_write) def ckptToPb():
checkpoint_file = os.path.join(export_dir, 'model.ckpt-200.meta')
ckpt = tf.train.get_checkpoint_state(export_dir)
print("model ", ckpt.model_checkpoint_path)
saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path +'.meta')
graph = tf.get_default_graph()
with tf.Session() as sess:
saver.restore(sess,ckpt.model_checkpoint_path)
height = 6
width = 6
input_image = tf.get_default_graph().get_tensor_by_name("input0:0")
fc0_output = tf.get_default_graph().get_tensor_by_name("add:0")
sess.run(tf.global_variables_initializer())
output_graph_def = tf.graph_util.convert_variables_to_constants(
sess, graph.as_graph_def(), ['add'])
model_name = os.path.join(export_dir, 'model200.pb')
with tf.gfile.GFile(model_name, "wb") as f:
f.write(output_graph_def.SerializeToString()) def PbTest():
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
output_graph_path = os.path.join(export_dir,'model200.pb')
with open(output_graph_path, "rb") as f:
output_graph_def.ParseFromString(f.read())
tf.import_graph_def(output_graph_def, name="") with tf.Session() as sess:
tf.initialize_all_variables().run()
height = 6
width = 6
inchannel = 3
outchannel = 3
input_image = tf.get_default_graph().get_tensor_by_name("input0:0")
fc0_output = tf.get_default_graph().get_tensor_by_name("add:0")
conv = tf.get_default_graph().get_tensor_by_name("conv0:0") img = np.arange(height * width * inchannel, dtype=np.float32).reshape((1,inchannel,height,width)) \
/ (1 * inchannel * height * width) * 255.0 - 127.5
print("img",img)
img = img.transpose(0,2,3,1)
import time
since = time.time()
fc0_output = sess.run(fc0_output,{input_image:img})
conv = sess.run(conv, {input_image: img})
time_elapsed = time.time() - since
print("tf inference time ", str(time_elapsed))
print("conv", conv.transpose(0, 2, 3, 1))
print("fc0_output", fc0_output) if __name__ == '__main__': saveckpt() #1
LoadModelToTensorBoard()#2
ckptToPb()#3
PbTest()#

tensorflow 模型前向传播 保存ckpt tensorbard查看 ckpt转pb pb 转snpe dlc 实例的更多相关文章

  1. Tensorflow模型加载与保存、Tensorboard简单使用

    先上代码: from __future__ import absolute_import from __future__ import division from __future__ import ...

  2. TensorFlow模型加载与保存

    我们经常遇到训练时间很长,使用起来就是Weight和Bias.那么如何将训练和测试分开操作呢? TF给出了模型的加载与保存操作,看了网上都是很简单的使用了一下,这里给出一个神经网络的小程序去测试. 本 ...

  3. 利用tensorflow实现前向传播

    import tensorflow as tf w1 = tf.Variable(tf.random_normal((2, 3), stddev=1, seed=1))w2 = tf.Variable ...

  4. Tensorflow笔记——神经网络图像识别(一)前反向传播,神经网络八股

      第一讲:人工智能概述       第三讲:Tensorflow框架         前向传播: 反向传播: 总的代码: #coding:utf-8 #1.导入模块,生成模拟数据集 import t ...

  5. tensorflow模型的保存与恢复,以及ckpt到pb的转化

    转自 https://www.cnblogs.com/zerotoinfinity/p/10242849.html 一.模型的保存 使用tensorflow训练模型的过程中,需要适时对模型进行保存,以 ...

  6. tensorflow模型持久化保存和加载

    模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...

  7. Tensorflow模型变量保存

    Tensorflow:模型变量保存 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考文献Tensorflow实战Google深度学习框架 实验平台: Tensorflow1.4.0 pyt ...

  8. tensorflow模型持久化保存和加载--深度学习-神经网络

    模型文件的保存 tensorflow将模型保持到本地会生成4个文件: meta文件:保存了网络的图结构,包含变量.op.集合等信息 ckpt文件: 二进制文件,保存了网络中所有权重.偏置等变量数值,分 ...

  9. 超详细的Tensorflow模型的保存和加载(理论与实战详解)

    1.Tensorflow的模型到底是什么样的? Tensorflow模型主要包含网络的设计(图)和训练好的各参数的值等.所以,Tensorflow模型有两个主要的文件: a) Meta graph: ...

随机推荐

  1. [svc]centos6上部署openvpn+gg二步认证

    最近又发现个新的vpn: wireguard 为了满足员工在家办公的需求.需要 openvpn+gg方案 在centos6上部署openvpn 参考 1.安装前准备 wget -O /etc/yum. ...

  2. Status bar and navigation bar appear over my view's bounds in iOS 7

    转自:http://stackoverflow.com/questions/17074365/status-bar-and-navigation-bar-appear-over-my-views-bo ...

  3. 在TypeScript中扩展JavaScript基础对象的功能

    最近工作中用到,记录一下:假设我们需要一个功能,把一个数字比如10000输出为下面的字符串格式“10,000”,一般是写一个方法,那么我希望更方便一点,直接向Number类型添加一个格式化方法,比如叫 ...

  4. 【小白的CFD之旅】22 好网格与坏网格

    网格疏密网格形状其他的一些问题小白的总结郑重申明 网格的作用如此重要,以至于小白纠结了很久.小白知道网格划分过程很大程度上受制于计算资源的限制,但小白还是不太明白,如果计算资源非常充足,不用顾忌资源限 ...

  5. 聊一聊 Spring 中的线程安全性

    Spring与线程安全 Spring作为一个IOC/DI容器,帮助我们管理了许许多多的“bean”.但其实,Spring并没有保证这些对象的线程安全,需要由开发者自己编写解决线程安全问题的代码. Sp ...

  6. C++技术沙龙报名开始啦!

    沙龙主题:C++甜点关键字:C++之美,黑科技,神奇和魔力内容:三场主题演讲和一场开放性话题讨论时间:2015年5月16日下午2:00-6:00地点:珠海金山办公软件1楼VIP厅,珠海市吉大景山路莲山 ...

  7. Let's Encrypt申请免费SSL证书

    1.https的作用 安全,防止网站被劫持,数据被修改 2.Let's Encrypt是什么 Let's Encrypt是一个证书授权机构(CA),可以从Let's Encrypt获得网站域名的免费证 ...

  8. 每日英语:How the College Bubble Will Pop

    The American political class has long held that higher education is vital to individual and national ...

  9. android工程导入没有错误,运行提示Unable to instantiate activity ComponentInfo

    导入小米clientside_android_sdk的demo OAuth-OpenAuthDemo,点Java Build Path的Libraries内Add External JARs,将oau ...

  10. HBase操作(Shell与Java API)

    版权声明:本文为博主原创文章,未经博主允许不得转载.     转: http://blog.csdn.net/u013980127/article/details/52443155 下面代码在Hado ...