题目链接

题意:求\(\sum_{i=1}^{n}\gcd(i,n)\)

首先可以肯定,\(\gcd(i,n)|n\)。

所以设\(t(x)\)表示\(gcd(i,n)=x\)的\(i\)的个数。

那么答案很显然就是\(\sum_{d|n}t(d)*d\)。

那么\(t(x)\)怎么求呢。

\[t(x)=\sum_{i=1}^{n}[\gcd(i,n)=x]
\]

因为若\(\gcd(x,y)=1\),则有\(\gcd(xk,yk)=k\)。

所以

\[t(x)=\sum_{i=1}^{n}[\gcd(i,n)=x]=\sum_{i=1}^{\lfloor\frac{n}{x}\rfloor}[\gcd(i,\lfloor\frac{n}{x}\rfloor)=1]=\phi(\lfloor\frac{n}{x}\rfloor)
\]

所以最终答案就是\(\sum_{d|n}[\phi(\lfloor\frac{n}{d}\rfloor)*d]\)

我们可以在\(O(\sqrt n)\)的时间复杂度内求出\(n\)的所有约数,约数个数是\(\log n\)级别的,求\(\phi\)是\(O(\sqrt n)\)的时间复杂度,所以总时间复杂度\(O(\log n\sqrt n)\)

#include <cstdio>
#include <cmath>
using namespace std;
typedef long long ll;
ll n;
ll phi(ll x){
int s = sqrt(x); ll ans = x;
for(int i = 2; i <= s && x != 1; ++i)
if(!(x % i)){
ans = ans / i * (i - 1);
while(!(x % i))
x /= i;
}
if(x != 1) ans = ans / x * (x - 1);
return ans;
}
int main(){
scanf("%lld", &n);
int i; ll ans = 0;
for(i = 1; (ll)i * i < n; ++i)
if(!(n % i))
ans += phi(n / i) * i + (n / i) * phi(i);
if(i * i == n) ans += phi(i) * i;
printf("%lld\n", ans);
return 0;
}

【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)的更多相关文章

  1. 洛谷 P2303 [SDOi2012]Longge的问题 解题报告

    P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...

  2. 洛谷P2303 [SDOi2012]Longge的问题

    题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...

  3. BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 2553  Solved: 1565[Submit][ ...

  4. Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论

    2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1959  Solved: 1229[Submit][ ...

  5. 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数

    题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...

  6. BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)

    题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...

  7. [洛谷P5106]dkw的lcm:欧拉函数+容斥原理+扩展欧拉定理

    分析 考虑使用欧拉函数的计算公式化简原式,因为有: \[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... ...

  8. [SDOI2012] Longge的问题 - 欧拉函数

    求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...

  9. 洛谷P2303 [SDOi2012] Longge的问题 数论

    看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...

  10. bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n ...

随机推荐

  1. SQL 单表分页存储过程和单表多字段排序和任意字段分页存储过程

      第一种:单表多字段排序分页存储过程       --支持单表多字段查询,多字段排序 create PROCEDURE [dbo].[UP_GetByPageFiledOrder] ( ), --表 ...

  2. 菜鸟的飞翔日记-os篇

    一轮王道os复习感想 1概述 虽然去年有上操作系统这门必修课,考的成绩也算理想,本来还有点沾沾自喜,嗯,觉得自己学的还不错,知道有一天我拿起了王道,(没给王道打广告)看王道的原因完全在于为考研做准备, ...

  3. 【Linux】- CentOS搭建FTP服务器

    1.安装vsftpd yum install -y vsftpd 2.启动vsftpd服务 service vsftpd start 3.查看运行状态 netstat -nltp | 完毕!!! 参考 ...

  4. matlab中nargin函数的用法

    nargin是用来判断输入变量个数的函数,这样就可以针对不同的情况执行不同的功能. 通常可以用他来设定一些默认值,如下面的函数. 例子,函数test1的功能是输出a和b的和.如果只输入一个变量,则认为 ...

  5. [转]matlab语言中的assert断言函数

    MATLAB语言没有系统的断言函数,但有错误报告函数 error 和 warning.由于要求对参数的保护,需要对输入参数或处理过程中的一些状态进行判断,判断程序能否/是否需要继续执行.在matlab ...

  6. BZOJ4810 Ynoi2017由乃的玉米田(莫队+bitset)

    多组询问不强制在线,那么考虑莫队.bitset维护当前区间出现了哪些数,数组记录每个数的出现次数以维护bitset.对于乘法,显然应有一个根号范围内的因子,暴力枚举即可.对于减法,a[i]-a[j]= ...

  7. 【题解】CF#229 E-Gifts

    尽管是一道E题,但真心并不很难~不难发现,有一些物品是一定要被选择的,我们所需要决策的仅仅只有那几个有重复价值的物品. 而不同名字之间的概率并不互相影响,所以我们有 \(f[i][j]\) 表示名字为 ...

  8. 【Winform】.cs文件命名空间排序及注释批量处理工具

    公司里每个程序员在命名空间的排序和注释上都有很多的不同. 杂乱的命名空间: using System; using System.Collections.Generic; using Autodesk ...

  9. BZOJ2732:[HNOI2012]射箭——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2732 https://www.luogu.org/problemnew/show/P3222#su ...

  10. BZOJ2120:数颜色——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=2120 https://www.luogu.org/problemnew/show/P1903#su ...