【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)
题目链接
题意:求\(\sum_{i=1}^{n}\gcd(i,n)\)
首先可以肯定,\(\gcd(i,n)|n\)。
所以设\(t(x)\)表示\(gcd(i,n)=x\)的\(i\)的个数。
那么答案很显然就是\(\sum_{d|n}t(d)*d\)。
那么\(t(x)\)怎么求呢。
\]
因为若\(\gcd(x,y)=1\),则有\(\gcd(xk,yk)=k\)。
所以
\]
所以最终答案就是\(\sum_{d|n}[\phi(\lfloor\frac{n}{d}\rfloor)*d]\)
我们可以在\(O(\sqrt n)\)的时间复杂度内求出\(n\)的所有约数,约数个数是\(\log n\)级别的,求\(\phi\)是\(O(\sqrt n)\)的时间复杂度,所以总时间复杂度\(O(\log n\sqrt n)\)
#include <cstdio>
#include <cmath>
using namespace std;
typedef long long ll;
ll n;
ll phi(ll x){
int s = sqrt(x); ll ans = x;
for(int i = 2; i <= s && x != 1; ++i)
if(!(x % i)){
ans = ans / i * (i - 1);
while(!(x % i))
x /= i;
}
if(x != 1) ans = ans / x * (x - 1);
return ans;
}
int main(){
scanf("%lld", &n);
int i; ll ans = 0;
for(i = 1; (ll)i * i < n; ++i)
if(!(n % i))
ans += phi(n / i) * i + (n / i) * phi(i);
if(i * i == n) ans += phi(i) * i;
printf("%lld\n", ans);
return 0;
}
【洛谷 P2303】 [SDOi2012]Longge的问题 (欧拉函数)的更多相关文章
- 洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数\(N\),你需要 ...
- 洛谷P2303 [SDOi2012]Longge的问题
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
- BZOJ 2705: [SDOI2012]Longge的问题 [欧拉函数]
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 2553 Solved: 1565[Submit][ ...
- Bzoj 2705: [SDOI2012]Longge的问题 欧拉函数,数论
2705: [SDOI2012]Longge的问题 Time Limit: 3 Sec Memory Limit: 128 MBSubmit: 1959 Solved: 1229[Submit][ ...
- 【bzoj2705】[SDOI2012]Longge的问题 欧拉函数
题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). 输入 一个整数,为N. 输出 ...
- BZOJ2705: [SDOI2012]Longge的问题(欧拉函数)
题意 题目链接 Sol 开始用反演推发现不会求\(\mu(k)\)慌的一批 退了两步发现只要求个欧拉函数就行了 \(ans = \sum_{d | n} d \phi(\frac{n}{d})\) 理 ...
- [洛谷P5106]dkw的lcm:欧拉函数+容斥原理+扩展欧拉定理
分析 考虑使用欧拉函数的计算公式化简原式,因为有: \[lcm(i_1,i_2,...,i_k)=p_1^{q_{1\ max}} \times p_2^{q_{2\ max}} \times ... ...
- [SDOI2012] Longge的问题 - 欧拉函数
求 \(\sum\limits_{i=1}^{n}gcd(i,n)\) Solution 化简为 \(\sum\limits_{i|n}^{n}φ(\dfrac{n}{i})i\) 筛出欧拉函数暴力求 ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- bzoj 2705 [SDOI2012]Longge的问题——欧拉函数大水题
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2705 撕逼题.不就是枚举gcd==d,求和phi[ n/d ]么. 然后预处理sqrt (n ...
随机推荐
- TCP系列20—重传—10、早期重传(ER)
一.介绍 在前面介绍thin stream时候我们介绍过有两种场景下可能不会产生足够的dup ACK来触发快速重传,一种是游戏类响应交互式tcp传输,另外一种是传输受到拥塞控制的限制,只能发送少量TC ...
- noauth authentication required redis
解决方案: 这是出现了认证的问题,是因为设置了认证密码. 127.0.0.1:6379> auth "yourpassword" 例如:
- Qt-excel文件操作方法
版权声明:若无来源注明,Techie亮博客文章均为原创. 转载请以链接形式标明本文标题和地址: 本文标题:Qt-excel文件操作方法 本文地址:http://techieliang.com/ ...
- 获得system32等系统文件权限
SYSTEM是至高无上的超级管理员帐户.默认情况下,我们无法直接在登录对话框上以SYSTEM帐户的身份登录到Windows桌面环境.实际上SYSTEM帐户早就已经“盘踞”在系统中了.根据http:// ...
- 每天网络半小时(MAC数据包在哪里合并的)
ip_deliver_local函数中函数中完成合并 听过netfilter框架中也会 因为net_filter框架需要感知到第四层的信息,但是单个数据包是无法感知到这些信息的,所以需要在netfil ...
- 第14天:逻辑运算符、if、for语句
今天学习了逻辑运算符.if.for语句基础知识. 一.逻辑运算符 1.&&(与) 一假即假,同真为真2.||(或)一真即真,同假为假3.!(非)切记:参与逻辑运算的,都是布尔值.也就是 ...
- SQL查询数据总结
SQL查询数据 完整语法 Select [select选项] 字段列表[字段别名]/* from 数据源 [where条件子句] [group by子句] [having子句] [order by子句 ...
- matlab exist函数
函数作用:用于确定某变量或值是否存在. 调用格式: exist主要有两种形式,一个参数和两个参数的,作用都是用于确定某值是否存在:1. b = exist( a) 若 a 存在,则 b = 1: 否则 ...
- Kingdom and its Cities - CF613D
Meanwhile, the kingdom of K is getting ready for the marriage of the King's daughter. However, in or ...
- java 注解使用笔记
一.语法 注解也属于一种类型 public @interface MyTestAnnotation { } 用@interface描述 根据情况可以应用于包.类型.构造方法.方法.成员变量.参数及本地 ...