题意:一张带权无向图中,有K条边可以免费修建。现在要修建一条从点1到点N的路,费用是除掉免费的K条边外,权值最大的那条边的值,求最小花费。

分析:假设存在一个临界值X,小于X的边全部免费,那么此时由大于等于X的边组成的图,从点1到点N走过的边数小于等于K,那么这个X就是所求的答案。所以可以通过二分答案的方法求解该问题,每一次根据mid值跑迪杰斯特拉,d[i]记录路径长度(走过边的数目)。需要注意的是,要特判一下点1到点N本身不连通的情况以及花费为0的情况。二分的时候,当d[N]>K时修改答案为mid,因为此时能确定最后的结果一定大于等于mid。

#include<iostream>
#include<stdio.h>
#include<cstring>
#include<queue>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
typedef int LL;
const int maxn =1e3+;
const int maxm =5e4+;
const LL INF =0x3f3f3f3f;
struct Edge{
int from,to,next;
LL val;
bool operator <(const Edge &e) const {return val<e.val;}
}; struct HeapNode{
LL d; //费用或路径
int u;
bool operator < (const HeapNode & rhs) const{return d > rhs.d;}
};
struct Dijstra{
int n,m,tot;
Edge edges[maxm];
bool used[maxn];
LL d[maxn];
int head[maxn]; void init(int n){
this->n = n;
this->tot=;
memset(head,-,sizeof(head));
} void Addedge(int u,int v ,LL dist){
edges[tot].to = v;
edges[tot].val = dist;
edges[tot].next = head[u];
head[u] = tot++;
} int dijkstra(int s,int limit){
memset(used,,sizeof(used));
priority_queue<HeapNode> Q;
for(int i=;i<=n;++i) d[i]=INF; //d[i]记录的是到i点走过的权值超过limit的边数
d[s]=;
Q.push((HeapNode){,s});
while(!Q.empty()){
HeapNode x =Q.top();Q.pop();
int u =x.u;
if(d[u]<x.d) continue; //没有更新的必要,不加判断也对,但是慢一点点
for(int i=head[u];~i;i=edges[i].next){
int nd = d[u]+(edges[i].val>=limit?:);
int v = edges[i].to;
if (d[v] > nd){
d[v] = nd;
Q.push({d[v], v});
}
}
}
return d[n];
}
}G; #define LOCAL
int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int N,M,K,u,v,k;
LL tmp;
while(scanf("%d%d%d",&N,&M,&K)==){
G.init(N);
int maxL = -;
for(int i=;i<M;++i){
scanf("%d%d%d",&u,&v,&tmp);
G.Addedge(u,v,tmp);
G.Addedge(v,u,tmp);
if(maxL<tmp) maxL = tmp;
}
int res = G.dijkstra(,);
if(res==INF){
printf("-1\n");
continue;
}
else if(res<=K){ //先特判一下
printf("0\n");
continue;
}
int L =,R=maxL,mid,ans;
while(L<R){
mid =(L+R)>>;
if(G.dijkstra(,mid)>K){
ans = mid; //此时能确定的是:肯定要花费mid的代价
L = mid+;
}
else R =mid-;
}
printf("%d\n",ans);
}
return ;
}

POJ - 3662 Telephone Lines (Dijkstra+二分)的更多相关文章

  1. poj 3662 Telephone Lines dijkstra+二分搜索

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 5696   Accepted: 2071 D ...

  2. POJ 3662 Telephone Lines(二分答案+SPFA)

    [题目链接] http://poj.org/problem?id=3662 [题目大意] 给出点,给出两点之间连线的长度,有k次免费连线, 要求从起点连到终点,所用的费用为免费连线外的最长的长度. 求 ...

  3. POJ 3662 Telephone Lines (二分 + 最短路)

    Farmer John wants to set up a telephone line at his farm. Unfortunately, the phone company is uncoop ...

  4. POJ 3662 Telephone Lines【二分答案+最短路】||【双端队列BFS】

    <题目链接> 题目大意: 在一个节点标号为1~n的无向图中,求出一条1~n的路径,使得路径上的第K+1条边的边权最小. 解题分析:直接考虑情况比较多,所以我们采用二分答案,先二分枚举第K+ ...

  5. (poj 3662) Telephone Lines 最短路+二分

    题目链接:http://poj.org/problem?id=3662 Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total ...

  6. POJ 3662 Telephone Lines【Dijkstra最短路+二分求解】

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7214   Accepted: 2638 D ...

  7. poj 3662 Telephone Lines(最短路+二分)

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 6973   Accepted: 2554 D ...

  8. poj 3662 Telephone Lines

    Telephone Lines Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7115   Accepted: 2603 D ...

  9. poj 3662 Telephone Lines spfa算法灵活运用

    意甲冠军: 到n节点无向图,它要求从一个线1至n路径.你可以让他们在k无条,的最大值.如今要求花费的最小值. 思路: 这道题能够首先想到二分枚举路径上的最大值,我认为用spfa更简洁一些.spfa的本 ...

随机推荐

  1. weblogic配置oracle数据源

    在weblogic配置oracle数据源还是挺简单的,网上也有很多关于这方面的文章,写给自己也写给能够得到帮助的人吧.weblogic新建域那些的就不说了哈.点击startWebLogic文件,会弹出 ...

  2. 【tyvj】P2065 「Poetize10」封印一击(贪心+线段树/差分)

    http://new.tyvj.cn/p/2065 我就不说我很sb的用线段树来维护值...... 本机自测的时候想了老半天没想出怎么维护点在所有区间被多少区间包含的方法.最后一小时才想出来线段树(果 ...

  3. jni调用 java.lang.UnsatisfiedLinkError: no segmentor_jni in java.library.path

    改过 LD_LIBRARY_PATH 改过 /etc/ld.so.conf 参考这篇文章 http://blog.csdn.net/zjuylok/article/details/4152559 最后 ...

  4. 计算机视觉中的边缘检测Edge Detection in Computer Vision

    计算机视觉中的边缘检测   边缘检测是计算机视觉中最重要的概念之一.这是一个很直观的概念,在一个图像上运行图像检测应该只输出边缘,与素描比较相似.我的目标不仅是清晰地解释边缘检测是怎样工作的,同时也提 ...

  5. VC++Debug避免F11步进不想要的函数中

    It's often useful to avoid stepping into some common code like constructors or overloaded operators. ...

  6. Ubuntu中su认证失败

    Ubuntu安装后,root用户默认是被锁定了的,不允许登录,也不允许 su 到 root 解决方法 sudo -i,输入当前用户密码后以root权限登录shell,无时间限制.使用exit或logo ...

  7. css各居中大法

    <!DOCTYPE html><html> <head> <meta charset="utf-8" /> <title> ...

  8. python序列中添加高斯噪声

    def wgn(x, snr): snr = 10**(snr/10.0) xpower = np.sum(x**2)/len(x) npower = xpower / snr return np.r ...

  9. linux mysql 新增用户 分配权限

    insert into mysql.user(Host,User,Password) values("%","admin",password("adm ...

  10. [LintCode] 带重复元素的排列

    递归实现: class Solution { public: /** * @param nums: A list of integers. * @return: A list of unique pe ...