【题解】Atcoder ARC#90 E-Avoiding Collision
自己做出来固然开心,但是越发感觉到自己写题的确是很慢很慢了……往往有很多的细节反反复复的考虑才能确定,还要加油呀~
这道题目的突破口在于正难则反。直接求有多少不相交的不好求,我们转而求出所有相交的。我们先预处理出由 \(S\) 到 \(T\) 的最短路图(跑一边Dijkstra,所有的最短路径构成的图),显然可以顺便处理出 \(T\) 到 \(S\) 的。然后这个图是一个拓扑图,满足的性质就是从 \(S\) 点出发的任意一条路径终点均为 \(T\) 且为二者之间的最短路。拓扑图dp对于每个点我们又可以获得 \(Way1[u], Way2[u]\) 分别表示从起点到 \(u\) 点的总路径数和从终点到 \(u\) 的总路径数。
之后我们可以分类讨论一下,两条路径相遇是相遇在点上还是相遇在边上。相遇在点上很好判断,就是从起点到 \(u\) 点的距离正好等于从 \(u\) 点到终点的距离;相遇在边上则要求路径的终点落在这条边上,也是可以 O(1) 判断的。这样就好啦~(๑´ㅂ`๑)
#include <bits/stdc++.h>
using namespace std;
#define maxn 500000
#define mod 1000000007
#define int long long
int n, m, dis1[maxn], dis2[maxn];
int ans, K, S, T, Way1[maxn], Way2[maxn];
bool vis[maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} struct edge
{
int cnp, fr[maxn], to[maxn], co[maxn];
int last[maxn], head[maxn], degree[maxn];
edge() { cnp = ; }
void add(int u, int v, int w = )
{
fr[cnp] = u, to[cnp] = v, co[cnp] = w;
last[cnp] = head[u], head[u] = cnp ++;
}
}E[], G; struct node
{
int x, y;
node(int _x = , int _y = ) { x = _x, y = _y; }
friend bool operator <(const node& a, const node& b)
{ return a.y > b.y; }
}; priority_queue <node> q; void Up(int &x, int y) { x = (x + y) % mod; }
int Qpow(int x) { return x * x % mod; }
void Dijk(int S, int *dis)
{
memset(vis, , sizeof(vis));
dis[S] = ; q.push(node(S, ));
while(!q.empty())
{
node now = q.top(); q.pop();
int u = now.x; if(vis[u]) continue; vis[u] = ;
for(int i = G.head[u]; i; i = G.last[i])
{
int v = G.to[i];
if(dis[v] > dis[u] + G.co[i])
{
dis[v] = dis[u] + G.co[i];
q.push(node(v, dis[v]));
}
}
}
} void Toposort()
{
memset(vis, , sizeof(vis));
queue <int> q; q.push(S);
while(!q.empty())
{
int u = q.front(); q.pop();
for(int i = G.head[u]; i; i = G.last[i])
{
int v = G.to[i];
if((dis1[u] + dis2[v] + G.co[i]) == K)
{
E[].add(u, v); E[].degree[v] ++;
E[].add(v, u); E[].degree[u] ++;
if(!vis[v]) q.push(v), vis[v] = ;
}
}
}
} void TopoDP(int opt, int *Way)
{
queue <int> q;
for(int i = ; i <= n; i ++)
if(!E[opt].degree[i])
q.push(i), Way[i] = ;
while(!q.empty())
{
int u = q.front(); q.pop();
for(int i = E[opt].head[u]; i; i = E[opt].last[i])
{
int v = E[opt].to[i];
E[opt].degree[v] --; Up(Way[v], Way[u]);
if(!E[opt].degree[v]) q.push(v);
}
}
} signed main()
{
n = read(), m = read(); S = read(), T = read();
for(int i = ; i <= m; i ++)
{
int x = read(), y = read(), w = read();
G.add(x, y, w), G.add(y, x, w);
}
memset(dis1, , sizeof(dis1)); memset(dis2, , sizeof(dis2));
Dijk(S, dis1), Dijk(T, dis2);
K = dis1[T]; Toposort();
TopoDP(, Way1); TopoDP(, Way2);
for(int i = ; i <= n; i ++)
if(dis1[i] + dis1[i] == K)
Up(ans, Qpow(Way1[i] * Way2[i] % mod) % mod);
for(int i = ; i < E[].cnp; i ++)
{
int u = E[].fr[i], v = E[].to[i];
if(dis1[u] * == K || dis1[v] * == K) continue;
if(K > * dis1[u] && K < * (K - dis2[v]))
Up(ans, Qpow(Way1[u] * Way2[v] % mod) % mod);
}
ans = (Way1[T] * Way1[T] % mod - ans + mod) % mod;
printf("%lld\n", ans);
return ;
}
【题解】Atcoder ARC#90 E-Avoiding Collision的更多相关文章
- 【题解】Atcoder ARC#90 F-Number of Digits
Atcoder刷不动的每日一题... 首先注意到一个事实:随着 \(l, r\) 的增大,\(f(r) - f(l)\) 会越来越小.考虑暴力处理出小数据的情况,我们可以发现对于左端点 \(f(l) ...
- [题解] Atcoder ARC 142 D Deterministic Placing 结论,DP
题目 (可能有点长,但是请耐心看完,个人认为比官方题解好懂:P) 首先需要注意,对于任意节点i上的一个棋子,如果在一种走法中它走到了节点j,另一种走法中它走到了节点k,那么这两种走法进行完后,棋子占据 ...
- [题解] Atcoder ARC 142 E Pairing Wizards 最小割
题目 建图很妙,不会. 考虑每一对要求合法的巫师(x,y),他们两个的\(a\)必须都大于\(min(b_x,b_y)\).所以在输入的时候,如果\(a_x\)或者\(a_y\)小于\(min(b_x ...
- AtCoder ARC 090 E / AtCoder 3883: Avoiding Collision
题目传送门:ARC090E. 题意简述: 给定一张有 \(N\) 个点 \(M\) 条边的无向图.每条边有相应的边权,边权是正整数. 小 A 要从结点 \(S\) 走到结点 \(T\) ,而小 B 则 ...
- [题解] Atcoder Regular Contest ARC 147 A B C D E 题解
点我看题 A - Max Mod Min 非常诈骗.一开始以为要观察什么神奇的性质,后来发现直接模拟就行了.可以证明总操作次数是\(O(nlog a_i)\)的.具体就是,每次操作都会有一个数a被b取 ...
- 【题解】Atcoder ARC#96 F-Sweet Alchemy
首先,我们发现每一个节点所选择的次数不好直接算,因为要求一个节点被选择的次数大于等于父亲被选择的次数,且又要小于等于父亲被选择的次数 \(+D\).既然如此,考虑一棵差分的树,规定每一个节点被选择的次 ...
- 【题解】Atcoder ARC#94 F-Normalization
再次膜拜此强题!神级性质之不可能发现系列收藏++:首先,对于长度<=3的情况,我们采取爆搜答案(代码当中是打表).对于长度>=4的情况,则有如下几条玄妙的性质: 首先我们将 a, b, c ...
- [题解] Atcoder Regular Contest ARC 148 A B C E 题解
点我看题 题目质量一言难尽(至少对我来说 所以我不写D的题解了 A - mod M 发现如果把M选成2,就可以把答案压到至多2.所以答案只能是1或2,只要判断答案能不能是1即可.如果答案是1,那么M必 ...
- [题解] Atcoder Regular Contest ARC 151 A B C D E 题解
点我看题 昨天刚打的ARC,题目质量还是不错的. A - Equal Hamming Distances 对于一个位置i,如果\(S_i=T_i\),那么不管\(U\)的这个位置填什么,对到\(S\) ...
随机推荐
- 16 pep8 编码规范
pep8 编码规范 Python Enhancement Proposals :python改进方案 https://www.python.org/dev/peps/ 1. 每级缩进用4个空格. 括号 ...
- VIO概述 On-Manifold Preintegration for Real-Time Visual--Inertial Odometry
目前的研究方向可以总结为在滤波算法中实现高精度,在优化算法中追求实时性.当加入IMU后,研究方向分为松耦合和紧耦合,松耦合分别单独计算出IMU测量得到的状态和视觉里程计得到的状态然后融合,紧耦合则将I ...
- mysql 优化笔记
数据表总共81万条数 SQL explain ); 执行时间超级长,没有等到执行完成就终止了太慢了 explain一下 发现表bb 的select_type 为DEPENDENT SUBQUERY ...
- 解决CentOS下可以ping通ip ping不通域名
现象:1. ping不通域名,比如 www.qq.com 2. 可以ping通ip,比如 61.135.157.156 分析:1. 查看DNS配置文件 /etc/resolve.conf, 里面的服务 ...
- c# enum 解析
解析定义的枚举 public enum OrderPaymentStatus { /// <summary> /// 未支付 /// </summary> [Descripti ...
- InnoDB锁冲突案例演示(续)
Preface I've demontstrated several InnoDB locking cases in my previous blog.I'm gonna do the ...
- ACID、数据库隔离级别
ACID: A(Atomicity):原子性,要么全部执行,要么都不执行 C(consistency):一致性: 特点: 1.一个操作除法级联,这些必须成功,否则全部失败(原子性) 2.所有节点同步更 ...
- Jmeter登录接口返回 status415
1.现象:在查看结果树中看到: Request Headers:Connection: keep-aliveContent-Type: application/x-www-form-urlencode ...
- 跟浩哥学自动化测试Selenium -- 我的第一个Demo (2)
我的第一个Demo 开始写第一个 Demo 之前,先熟悉一下编写 Selenium 脚本的四个步骤: 驱动路径写法分析:System.setProperty 主要做用是设置系统属性,第一个参数为系统属 ...
- Python 函数参数类型大全(非常全!!!)
Python 函数参数类型大全(非常全!!!) 1.在python编写程序里面具有函数文档,它的主要作用是为了让别人可以更好的理解你的函数,所以这是一个好习惯,访问函数文档的方式是: MyFuncti ...