BZOJ4241 历史研究(莫队)
如果分块的话与区间众数没有本质区别。这里考虑莫队。
显然莫队时的删除可以用堆维护,但多了一个log不太跑得过。
有一种叫回滚莫队的trick,可以将问题变为只有加入操作。按莫队时分的块依次处理,一块中左端点的差不超过√n,右端点单调递增。首先将右端点也在该块中的询问暴力处理。然后令指针l在下一块开头,指针r在这一块结尾。暴力扩展右端点移动指针r,到达询问点时,移动指针l以回答询问,但不让指针l的移动对之后的询问产生影响,即回滚。这样就可以处理删除了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define ll long long
int n,m,a[N],b[N],cnt[N];
ll ans[N];
struct data
{
int x,y,k,i;
bool operator <(const data&a) const
{
return k<a.k||k==a.k&&y<a.y;
}
}q[N];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4241.in","r",stdin);
freopen("bzoj4241.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) b[i]=a[i]=read();
sort(b+,b+n+);
int t=unique(b+,b+n+)-b-;
for (int i=;i<=n;i++) a[i]=lower_bound(b+,b+t+,a[i])-b;
int block=sqrt(n);
for (int i=;i<=m;i++) q[i].x=read(),q[i].y=read(),q[i].k=q[i].x/block,q[i].i=i;
sort(q+,q+m+);
for (int i=;i<=m;i++)
{
int t=i;while (t<m&&q[t+].k==q[i].k) t++;
while (i<=t&&q[i].y<(q[i].k+)*block)
{
for (int j=q[i].x;j<=q[i].y;j++)
{
cnt[a[j]]++;
ans[q[i].i]=max(ans[q[i].i],1ll*cnt[a[j]]*b[a[j]]);
}
for (int j=q[i].x;j<=q[i].y;j++) cnt[a[j]]--;
i++;
}
int r=(q[i].k+)*block-;ll v=;
for (int j=i;j<=t;j++)
{
while (r<q[j].y)
{
cnt[a[++r]]++;
v=max(v,1ll*cnt[a[r]]*b[a[r]]);
}
ans[q[j].i]=v;
for (int k=(q[i].k+)*block-;k>=q[j].x;k--)
{
cnt[a[k]]++;
ans[q[j].i]=max(ans[q[j].i],1ll*cnt[a[k]]*b[a[k]]);
}
for (int k=(q[i].k+)*block-;k>=q[j].x;k--) cnt[a[k]]--;
}
memset(cnt,,sizeof(cnt));
i=t;
}
for (int i=;i<=m;i++) printf(LL,ans[i]);
return ;
}
BZOJ4241 历史研究(莫队)的更多相关文章
- BZOJ4241 历史研究 莫队 堆
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目 Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JO ...
- BZOJ 4241: 历史研究——莫队 二叉堆
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4241 题意:N个int范围内的数,M次询问一个区间最大的(数字*出现次数)(加权众数),可以 ...
- 【题解】BZOJ4241: 历史研究(魔改莫队)
[题解]BZOJ4241: 历史研究(魔改莫队) 真的是好题啊 题意 给你一个序列和很多组询问(可以离线),问你这个区间中\(\max\){元素出现个数\(\times\)元素权值} IOI国历史研究 ...
- [JOISC2014]歴史の研究/[BZOJ4241]历史研究
[JOISC2014]歴史の研究/[BZOJ4241]历史研究 题目大意: 一个长度为\(n(n\le10^5)\)的数列\(A(A_i\le10^9)\),定义一个元素对一个区间\([l,r]\)的 ...
- BZOJ4241历史研究——回滚莫队
题目描述 IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. 日记中记录了连 ...
- BZOJ4241:历史研究(回滚莫队)
Description IOI国历史研究的第一人——JOI教授,最近获得了一份被认为是古代IOI国的住民写下的日记.JOI教授为了通过这份日记来研究古代IOI国的生活,开始着手调查日记中记载的事件. ...
- 2018.08.14 bzoj4241: 历史研究(回滚莫队)
传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...
- bzoj4241: 历史研究(回滚莫队)
传送门 这是一个叫做回滚莫队的神奇玩意儿 是询问,而且不强制在线,就决定是你了莫队 如果是每次插入一个数是不是很简单? 然而悲剧的是我们莫队的时候不仅要插入数字还要删除数字 那么把它变成只插入不就行了 ...
- BZOJ4241 历史研究 【回滚莫队】
题目描述:给出一个长度为\(n\)的数组,每次询问区间 \([l,r]\),求 \(\max\limits_{x}x*cnt_x\),其中 \(cnt_x\) 表示 \(x\) 在区间 \([l,r] ...
随机推荐
- Java语言简介
Java即计算机编程语言 1.概念 Java是一门面向对象编程语言,不仅吸收了C++语言的各种优点,还摒弃了C++里难以理解的多继承.指针等概念,因此Java语言具有功能强大和简单易用两个特征.Jav ...
- MyBatis-自定义结果映射规则
1.自定义结果集映射规则 ①查询 <!-- public Employee getEmpById(Integer id); --> <select id="getEmpBy ...
- L010 linux命令及基础手把手实战总结
一转眼都快两周没更新了,最近实在太忙了,这两周的时间断断续续的把L010学完了,短短的15节课,确是把前10节的课程全部的运用一遍,从笔记到整理,再到重新理解,最后发布到微博,也确实提升了一些综合性能 ...
- Java子类与父类之间的类型转换
1.向上转换 父类的引用变量指向子类变量时,子类对象向父类对象向上转换.从子类向父类的转换不需要什么限制,只需直接蒋子类实例赋值给父类变量即可,这也是Java中多态的实现机制. 2.向下转换 在父类变 ...
- UPA深度性能报告解读
WeTest 导读 UPA作为腾讯WeTest与Unity官方联合打造的客户端性能分析工具,为开发者提供了极大的便利和效能提升.产出的分析报告内容详尽,但您是否真的读懂了报告?是否了解每项数据的含义? ...
- cf#516A. Make a triangle!(三角形)
http://codeforces.com/contest/1064/problem/A 题意:给出三角形的三条边,问要让他组成三角形需要增加多少长度 题解:规律:如果给出的三条边不能组成三角形,那答 ...
- Windows运行机理——窗口句柄和消息
Windows运行机理这系列文章都是来至于<零基础学Qt4编程>——吴迪,个人觉得写得很好,所以进行了搬运和个人加工 现在我们将消息与句柄联系起来.假如有一个窗口,且拥有该窗口的一个句柄( ...
- Windows10系统,安装appium之坑
本文主要讲述如何在 Windows10 系统上通过 npm 命令行安装 appium 应该有很多小伙伴在使用cnpm安装appium时遇到过各种报错,比如这样: 相信很多的小伙伴都会遇到这样的报错,导 ...
- 一步一步图文介绍SpriteKit使用TexturePacker导出的纹理集Altas
1.为什么要使用纹理集? 游戏是一种很耗费资源的应用,特别是在移动设备中的游戏,性能优化是非常重要的 纹理集是将多张小图合成一张大图,使用纹理集有以下优点: 1.减少内存占用,减少磁盘占用: 2.减少 ...
- 前端开发工程师 - 02.JavaScript程序设计 - 第1章.基础篇
第1章--基础篇 JS介绍 html 网页的内容:css 网页的样式:javascript 网页的行为 i.e. hello world <!DOCTYPE html> <html& ...