题目描述

广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列。今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数。

输入输出格式

输入格式:

输入包含一行6个整数。依次是p,q,a1,a2,n,m,其中在p,q,a1,a2整数范围内,n和m在长整数范围内。

输出格式:

输出包含一行一个整数,即an除以m的余数。

输入输出样例

输入样例#1:

1 1 1 1 10 7
输出样例#1:

6

说明

数列第10项是55,除以7的余数为6。

Solution:

  本题基本算是一道矩阵加速模板了,直接构造一手矩阵:

  \begin{bmatrix} a2& a1\end{bmatrix} 以及中间矩阵 \begin{bmatrix} p & 1 \\ q & 0 \end{bmatrix}

代码:

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
ll pp,q,a1,a2,n,m;
struct mat{ll a[][],r,c;};
il mat mul(mat x,mat y)
{
mat p;
mem(p);
for(int i=;i<x.r;i++)
for(int j=;j<y.c;j++)
for(int k=;k<x.c;k++)
p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j])%m;
p.r=x.r,p.c=y.c;
return p;
}
il void fast(ll k)
{
mat p,ans;
mem(p),mem(ans);
p.r=p.c=;
p.a[][]=pp,p.a[][]=,p.a[][]=q;
ans.r=,ans.c=;
ans.a[][]=a2,ans.a[][]=a1;
while(k)
{
if(k&)ans=mul(ans,p);
k>>=;
p=mul(p,p);
}
cout<<ans.a[][];
}
int main()
{
ios::sync_with_stdio();
cin>>pp>>q>>a1>>a2>>n>>m;
if(n==)cout<<a1%m;
else if(n==)cout<<a2%m;
else fast(n-);
return ;
}

#include<bits/stdc++.h>
#define il inline
#define ll long long
#define mem(p) memset(&p,0,sizeof(p))
using namespace std;
ll pp,q,a1,a2,n,m;
struct mat{ll a[3][3],r,c;};
il mat mul(mat x,mat y)
{
    mat p;
    mem(p);
    for(int i=0;i<x.r;i++)
        for(int j=0;j<y.c;j++)
            for(int k=0;k<x.c;k++)
    p.a[i][j]=(p.a[i][j]+x.a[i][k]*y.a[k][j])%m;
    p.r=x.r,p.c=y.c;
    return p;
}
il void fast(ll k)
{
    mat p,ans;
    mem(p),mem(ans);
    p.r=p.c=2;
    p.a[0][0]=pp,p.a[0][1]=1,p.a[1][0]=q;
    ans.r=1,ans.c=2;
    ans.a[0][0]=a2,ans.a[0][1]=a1;
    while(k)
    {
        if(k&1)ans=mul(ans,p);
        k>>=1;
        p=mul(p,p);
    }
    cout<<ans.a[0][0];
}
int main()
{
    ios::sync_with_stdio(0);
    cin>>pp>>q>>a1>>a2>>n>>m;
    if(n==1)cout<<a1%m;
    else if(n==2)cout<<a2%m;
    else fast(n-2);
    return 0;
}

P1349 广义斐波那契数列的更多相关文章

  1. 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]

    P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...

  2. P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...

  3. 洛谷P1349 广义斐波那契数列(矩阵快速幂)

    P1349 广义斐波那契数列 https://www.luogu.org/problemnew/show/P1349 题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定 ...

  4. 洛谷——P1349 广义斐波那契数列(矩阵加速)

    P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如$an=p\times a_{n-1}+q\times a_{n-2}$?的数列.今给定数列的两系数$p$和$q$,以及数列的最前两项 ...

  5. P1349 广义斐波那契数列(矩阵乘法)

    题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...

  6. 洛谷——P1349 广义斐波那契数列

    题目描述 广义的斐波那契数列是指形如an=p*an-1+q*an-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an除以m的余数. 输入输出格 ...

  7. Luogu P1349 广义斐波那契数列

    解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...

  8. 洛谷P1349 广义斐波那契数列

    传送门 话说谁能告诉我矩阵怎么用latex表示…… 差不多就这样 //minamoto #include<iostream> #include<cstdio> #include ...

  9. 矩阵乘法快速幂 codevs 1574 广义斐波那契数列

    codevs 1574 广义斐波那契数列  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 钻石 Diamond   题目描述 Description 广义的斐波那契数列是指形如 ...

随机推荐

  1. 成都Uber优步司机奖励政策(3月3日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  2. dsp5509的中断系统

    1. DSP5509有32个中断,中断分为软件中断和硬件中断,同时软件中断不可以屏蔽.软件中断由指令触发.55x在中断时DSP会自动保存ST0_55.ST1_55.ST2_55三个寄存器. 2. 其中 ...

  3. nodejs 实现套接字服务

    nodejs实现套接字服务     一 什么是套接字 1.套接字允许一个进程他通过一个IP地址和端口与另一个进程通信,当你实现对运行在同一台服务器上的两个不同进程的进程间通信或访问一个完全不同的服务器 ...

  4. python——一些常用的方法类

    测试的时候经常需要使用一些方法都整理放在一起,方便调用 首先一些基本的配置引入 localReadConfig = readConfig.ReadConfig() proDir = readConfi ...

  5. Objective-C Block数据类型 @protocol关键字

    Block数据类型 Block封装了一段代码 可以在任何时候执行 Block可以作为函数参数或者函数的返回值 而其本身又可以带输入参数或返回值 苹果官方建议尽量多用Block 在多线程 异步任务 集合 ...

  6. Python零基础入门必知

    Python自学知识点总结 //2018.10.09 1. Python(英国发音:/ˈpaɪθən/ 美国发音:/ˈpaɪθɑːn/), 是一种面向对象的解释型计算机程序设计语言,由荷兰人Guido ...

  7. Unity 特殊目录

    其他目录 Application.persistentDataPath:webGL平台只能使用这个

  8. centos端口管理

    centos 6.5 ###############配置filter表防火墙############### #清除预设表filter中的所有规则链的规则iptables -F #清除预设表filter ...

  9. 告别加载dll 出错开机加载项大揭秘

    提到开机加载(load)项,大家不要以为就是系统启动(run)项.最简单的例子是,杀毒软件或者用户手动删除病毒文件后,注册表中的自动加载信息仍在,登陆系统时就会提示"加载*dll出错,系统找 ...

  10. Period :KMP

    I - Period Problem Description For each prefix of a given string S with N characters (each character ...