题目描述

给出一个序列,多次询问一个区间的所有子区间最小值之和。

输入

输入文件的第一行包含两个整数n和q,分别代表序列长度和询问数。接下来一行,包含n个整数,以空格隔开,第i个整数为ai,即序列第i个元素的值。接下来q行,每行包含两个整数l和r,代表一次询问。

输出

对于每次询问,输出一行,代表询问的答案。

样例输入

5 5
5 2 4 1 3
1 5
1 3
2 4
3 5
2 5

样例输出

28
17
11
11
17


题解

单调栈+离线+扫描线+树状数组区间修改区间查询

首先把使用单调栈找出每个数左边第一个大于等于它的数的位置 $lp[i]$ 和右边第一个大于它的数的位置 $rp[i]$ 。

然后每个数的贡献为:左端点在 $[lp[i]+1,i]$ ,右端点在 $[i,rp[i]-1]$ 的所有区间。

如果把区间看作二维平面上的点的话,每个数的贡献相当于是一个矩形,查询范围也是一个矩形。因此问题转化为矩形加、查询矩形和。

可以使用树状数组区间修改来维护,具体方法可以参考 【bzoj3132】上帝造题的七分钟 。

然而本题坐标范围较大,不能直接上二维树状数组,需要使用扫描线去掉一维,然后使用树状数组解决。方法和那道题一样,维护 $\sum v_i,\sum x_iv_i,\sum y_iv_i,\sum x_iy_iv_i$ 即可。

因此离线处理,把每个修改矩形、询问矩形都拆成4个点,放到一起排序,然后扫一遍统计答案即可。(一个小技巧:由于区间左端点一定小于等于右端点,因此整个平面只有横坐标小于等于纵坐标的才有意义,因此可以只把询问矩形拆成两个点)

时间复杂度 $O(n\log n)$

#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
int n , a[N] , sta[N] , top , lp[N] , rp[N] , tot;
ll ans[N];
struct bit
{
ll v[N];
inline void add(int x , ll a)
{
int i;
for(i = x ; i <= n ; i += i & -i) v[i] += a;
}
inline ll query(int x)
{
int i;
ll ans = 0;
for(i = x ; i ; i -= i & -i) ans += v[i];
return ans;
}
}A , B , C , D;
struct data
{
int x , y , opt , c;
data() {}
data(int p , int q , int r , int s) {x = p , y = q , opt = r , c = s;}
bool operator<(const data &a)const {return y == a.y ? !opt && a.opt : y < a.y;}
}p[N * 6];
inline void modify(int x , int y , ll a)
{
A.add(x , a) , B.add(x , a * x) , C.add(x , a * y) , D.add(x , a * x * y);
}
inline ll solve(int x , int y)
{
return A.query(x) * (x + 1) * (y + 1) - B.query(x) * (y + 1) - C.query(x) * (x + 1) + D.query(x);
}
inline int read()
{
int ret = 0 , f = 0; char ch = getchar();
while(!isdigit(ch)) f |= (ch == '-') , ch = getchar();
while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ '0') , ch = getchar();
return f ? -ret : ret;
}
int main()
{
n = read();
int m = read() , i , l , r;
for(i = 1 ; i <= n ; i ++ ) a[i] = read();
top = 0 , sta[0] = 0;
for(i = 1 ; i <= n ; i ++ )
{
while(top && a[i] < a[sta[top]]) top -- ;
lp[i] = sta[top] + 1 , sta[++top] = i;
}
top = 0 , sta[0] = n + 1;
for(i = n ; i ; i -- )
{
while(top && a[i] <= a[sta[top]]) top -- ;
rp[i] = sta[top] - 1 , sta[++top] = i;
}
for(i = 1 ; i <= n ; i ++ )
{
p[++tot] = data(lp[i] , i , 0 , a[i]);
p[++tot] = data(i + 1 , i , 0 , -a[i]);
p[++tot] = data(lp[i] , rp[i] + 1 , 0 , -a[i]);
p[++tot] = data(i + 1 , rp[i] + 1 , 0 , a[i]);
}
for(i = 1 ; i <= m ; i ++ )
{
l = read() - 1 , r = read();
p[++tot] = data(r , r , 1 , i);
p[++tot] = data(l , r , -1 , i);
}
sort(p + 1 , p + tot + 1);
for(i = 1 ; i <= tot ; i ++ )
{
if(p[i].opt) ans[p[i].c] += p[i].opt * solve(p[i].x , p[i].y);
else modify(p[i].x , p[i].y , p[i].c);
}
for(i = 1 ; i <= m ; i ++ ) printf("%lld\n" , ans[i]);
return 0;
}

【bzoj4540】[Hnoi2016]序列 单调栈+离线+扫描线+树状数组区间修改区间查询的更多相关文章

  1. 【bzoj5173】[Jsoi2014]矩形并 扫描线+二维树状数组区间修改区间查询

    题目描述 JYY有N个平面坐标系中的矩形.每一个矩形的底边都平行于X轴,侧边平行于Y轴.第i个矩形的左下角坐标为(Xi,Yi),底边长为Ai,侧边长为Bi.现在JYY打算从这N个矩形中,随机选出两个不 ...

  2. 【bzoj3132】上帝造题的七分钟 二维树状数组区间修改区间查询

    题目描述 “第一分钟,X说,要有矩阵,于是便有了一个里面写满了0的n×m矩阵. 第二分钟,L说,要能修改,于是便有了将左上角为(a,b),右下角为(c,d)的一个矩形区域内的全部数字加上一个值的操作. ...

  3. 【bzoj3779】重组病毒 LCT+树上倍增+DFS序+树状数组区间修改区间查询

    题目描述 给出一棵n个节点的树,每一个节点开始有一个互不相同的颜色,初始根节点为1. 定义一次感染为:将指定的一个节点到根的链上的所有节点染成一种新的颜色,代价为这条链上不同颜色的数目. 现有m次操作 ...

  4. 1082 线段树练习 3 && 树状数组区间修改区间查询

    1082 线段树练习 3 题意: 给定序列初值, 要求支持区间修改, 区间查询 Solution 用树状数组, 代码量小, 空间占用小 巧用增量数组, 修改时在 \(l\) 处 $ + val$ , ...

  5. bzoj 3779 重组病毒 —— LCT+树状数组(区间修改+区间查询)

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3779 RELEASE操作可以对应LCT的 access,RECENTER则是 makeroo ...

  6. [POJ3468]关于整数的简单题 (你想要的)树状数组区间修改区间查询

    #include <cstdio> #include <algorithm> #include <cstring> #include <cctype> ...

  7. 【loj6041】「雅礼集训 2017 Day7」事情的相似度 后缀自动机+STL-set+启发式合并+离线+扫描线+树状数组

    题目描述 给你一个长度为 $n$ 的01串,$m$ 次询问,每次询问给出 $l$ .$r$ ,求从 $[l,r]$ 中选出两个不同的前缀的最长公共后缀长度的最大值. $n,m\le 10^5$ 题解 ...

  8. 【bzoj3110】[Zjoi2013]K大数查询 整体二分+树状数组区间修改

    题目描述 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c.如果是2 a b c形式,表示询问从第a个位置到第b个位置,第C大的数 ...

  9. 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询

    Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...

随机推荐

  1. [原创]python高可用程序设计方法

    有时候程序上的bug会导致程序引发诸如段错误的情况而导致程序异常退出,这时用crond服务来检测,就会有一段时间程序处于不可用的情况,为了增强程序的可用性,我们可以让子进程处理业务,而让主进程检测子进 ...

  2. 北京Uber优步司机奖励政策(3月22日)

    滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...

  3. Homebrew安装Redis找不到redis.conf文件

    使用Homebrew安装redis完成后,使用命令 redis-server 启动redis,如下图所示: 启动信息中存在一条警告信息:没有指定的配置文件 然而在安装目录中并没有发现redis.con ...

  4. NavRouter

    使用方法只需要跟vue-router一样正常使用即可,这里我们新加了一个路由跳转方法nav: router.nav()//参数同router.replace一样. 路由跳转策略 首先说下路由跳转过程, ...

  5. Selenium(Python) ddt读取CSV文件数据驱动

    import csvimport unittestfrom time import sleep from ddt import ddt, data, unpackfrom selenium impor ...

  6. 第五模块:WEB开发基础 第1章·HTML&CSS基础

    01-前端介绍 02-HTML介绍 03-HTML文档结构 04-head标签相关内容 05-常用标签一之h1~h6,p,a 06-常用标签一之ul.ol.div.img.span 07-常用标签二- ...

  7. 【system.date】使用说明

    对象:system.date 说明:提供一系列针对日期类型的操作 目录: 方法 返回 说明  system.date.isDate( date_string )  [True | False]  判断 ...

  8. lintcode 二叉树后序遍历

    /** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * Tr ...

  9. 209. First Unique Character in a String

    Description Find the first unique character in a given string. You can assume that there is at least ...

  10. python基本数据类型——元组

    元组 元组是一种不可变的序列,创建后不可以修改元素值 # 创建只包含一个元素的元组 >>a = (3,) >>print(a) (3,) #使用 tuple() 转换为元组 & ...