tensorflow 中 name_scope 及 variable_scope 的异同
Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable
can be used with the name of the variable as argument to either create a new variable with such name or retrieve the one that was created before. This is different from using the tf.Variable
constructor which will create a new variable every time it is called (and potentially add a suffix to the variable name if a variable with such name already exists). It is for the purpose of the variable sharing mechanism that a separate type of scope (variable scope) was introduced.
As a result, we end up having two different types of scopes:
- name scope, created using
tf.name_scope
ortf.op_scope
- variable scope, created using
tf.variable_scope
ortf.variable_op_scope
Both scopes have the same effect on all operations as well as variables created using tf.Variable
, i.e. the scope will be added as a prefix to the operation or variable name.
However, name scope is ignored by tf.get_variable
. We can see that in the following example:
with tf.name_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
The only way to place a variable accessed using tf.get_variable
in a scope is to use variable scope, as in the following example:
with tf.variable_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # my_scope/var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
Finally, let's look at the difference between the different methods for creating scopes. We can group them in two categories:
tf.name_scope(name)
(for name scope) andtf.variable_scope(name_or_scope, ...)
(for variable scope) create a scope with the name specified as argumenttf.op_scope(values, name, default_name=None)
(for name scope) andtf.variable_op_scope(values, name_or_scope, default_name=None, ...)
(for variable scope) create a scope, just like the functions above, but besides the scopename
, they accept an argumentdefault_name
which is used instead ofname
when it is set toNone
. Moreover, they accept a list of tensors (values
) in order to check if all the tensors are from the same, default graph. This is useful when creating new operations, for example, see the implementation oftf.histogram_summary
.
大意是说 name_scope及variable_scope的作用都是为了不传引用而访问跨代码区域变量的一种方式,其内部功能是在其代码块内显式创建的变量都会带上scope前缀(如上面例子中的a),这一点它们几乎一样。而它们的差别是,在其作用域中获取变量,它们对 tf.get_variable() 函数的作用是一个会自动添加前缀,一个不会添加前缀。
tensorflow 中 name_scope 及 variable_scope 的异同的更多相关文章
- tensorflow 中 name_scope和variable_scope
import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable( ...
- tensorflow中使用tf.variable_scope和tf.get_variable的ValueError
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...
- tensorflow中命名空间、变量命名的问题
1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:t ...
- Tensorflow中的name_scope和variable_scope
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行 ...
- TensorFlow学习笔记(1):variable与get_variable, name_scope()和variable_scope()
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命 ...
- TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...
- [翻译] Tensorflow中name scope和variable scope的区别是什么
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...
- TensorFlow中的变量命名以及命名空间.
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, t ...
- tensorflow中slim模块api介绍
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35 http://blog.csdn.net/guvcolie/article/details/77686 ...
随机推荐
- c# 常用操作保留
RanDom如何提高生成随机数的随机性 一个在线考试系统的项目,需要从题库中随机抽取试题,但是如果直接 Random ran=new Randon(),ran.Next(nummin,nummax); ...
- H4CK1T CTF 2016 Mexico-Remote pentest writeup
进去网站之后发现连接都是包含类型的,就能想到文件包含漏洞(话说刚总结过就能遇到这题,也算是复习啦) 这里用php://filter/read=convert.base64-encode/resourc ...
- dubbo配置约束
此处主要记录dubbo配置的一些约束规则. 采用官网提供的原文,描述如下: 一.XML配置(官网原文) 以 timeout 为例: 方法级优先,接口级次之,全局配置再次之. 如果级别一样,则消费方优先 ...
- Easyui Datagrid的Rownumber行号显示问题
Datagrid中当你的行数据超过9999时,第一列的行号rownumber将会因为表格内容过长而导致无法显示全部数字, 这一点Easyui无法做到自适应 所以需要进行修改,这里扩展一个方法就行了. ...
- Cross compile perl
Alex Suykov had do some work for this purpose, and my compile script is based on her patch. Steps St ...
- django组件整合
session Django中默认支持Session,其内部提供了5种类型的Session供开发者使用: 数据库(默认) 缓存 文件 缓存+数据库 加密cookie Django默认支持Session ...
- ModelShowDialog缓存上次浏览的URL
1. 一种解决方法设置每次清楚浏览的页面. In IE7, go to Tools | Internet Options. Click the Browsing History "Se ...
- IIS部署ASP.NET MVC (4.0)网站出现的错误
(1)无法读取配置节“system.web.extensions”,因为它缺少节声明 在IIS中,在基本设置中,将程序池选择为ASP.NET 4.0即OK! (2)由于 Web 服务器上的“ISAPI ...
- CentOS firewalld 防火墙操作
Centos 7 开启端口CentOS 7 默认没有使用iptables,所以通过编辑iptables的配置文件来开启80端口是不可以的 CentOS 7 采用了 firewalld 防火墙 如要查询 ...
- [hihoCoder] Trie树
This is a application of the Trie data structure, with minor extension. The critical part in this pr ...