tensorflow 中 name_scope 及 variable_scope 的异同
Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable
can be used with the name of the variable as argument to either create a new variable with such name or retrieve the one that was created before. This is different from using the tf.Variable
constructor which will create a new variable every time it is called (and potentially add a suffix to the variable name if a variable with such name already exists). It is for the purpose of the variable sharing mechanism that a separate type of scope (variable scope) was introduced.
As a result, we end up having two different types of scopes:
- name scope, created using
tf.name_scope
ortf.op_scope
- variable scope, created using
tf.variable_scope
ortf.variable_op_scope
Both scopes have the same effect on all operations as well as variables created using tf.Variable
, i.e. the scope will be added as a prefix to the operation or variable name.
However, name scope is ignored by tf.get_variable
. We can see that in the following example:
with tf.name_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
The only way to place a variable accessed using tf.get_variable
in a scope is to use variable scope, as in the following example:
with tf.variable_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # my_scope/var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
Finally, let's look at the difference between the different methods for creating scopes. We can group them in two categories:
tf.name_scope(name)
(for name scope) andtf.variable_scope(name_or_scope, ...)
(for variable scope) create a scope with the name specified as argumenttf.op_scope(values, name, default_name=None)
(for name scope) andtf.variable_op_scope(values, name_or_scope, default_name=None, ...)
(for variable scope) create a scope, just like the functions above, but besides the scopename
, they accept an argumentdefault_name
which is used instead ofname
when it is set toNone
. Moreover, they accept a list of tensors (values
) in order to check if all the tensors are from the same, default graph. This is useful when creating new operations, for example, see the implementation oftf.histogram_summary
.
大意是说 name_scope及variable_scope的作用都是为了不传引用而访问跨代码区域变量的一种方式,其内部功能是在其代码块内显式创建的变量都会带上scope前缀(如上面例子中的a),这一点它们几乎一样。而它们的差别是,在其作用域中获取变量,它们对 tf.get_variable() 函数的作用是一个会自动添加前缀,一个不会添加前缀。
tensorflow 中 name_scope 及 variable_scope 的异同的更多相关文章
- tensorflow 中 name_scope和variable_scope
import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable( ...
- tensorflow中使用tf.variable_scope和tf.get_variable的ValueError
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...
- tensorflow中命名空间、变量命名的问题
1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:t ...
- Tensorflow中的name_scope和variable_scope
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行 ...
- TensorFlow学习笔记(1):variable与get_variable, name_scope()和variable_scope()
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命 ...
- TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...
- [翻译] Tensorflow中name scope和variable scope的区别是什么
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...
- TensorFlow中的变量命名以及命名空间.
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, t ...
- tensorflow中slim模块api介绍
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35 http://blog.csdn.net/guvcolie/article/details/77686 ...
随机推荐
- Oracle密码过期,取消密码180天限制
1.进入sqlplus模式 sqlplus / as sysdba; 2.帐户再改一次密码 alter user 用户名 identified by 原密码; 3.查看用户密码的有效期设置(一般默认的 ...
- mybatis expected at least 1 bean which qualifies as autowire candidate for this dependency
错误原因:没有引入相应mapper接口,导致spring没有找到依赖 解决方法一:使用注解的方法: 首先在spring配置文件中添加 <bean class="org.mybatis. ...
- Master Sudoku:Get The Skill
自己做的小游戏 google play store: https://play.google.com/store/apps/details?id=com.ffipp.sodoku app store: ...
- Chrome调试ECMAScript之断点debug技巧大全!
这篇文章主要介绍了使用Chrome调试JavaScript的断点设置和调试技巧,需要的朋友可以参考下 你是怎么调试 JavaScript 程序的?最原始的方法是用 alert() 在页面上打印内容,稍 ...
- 【Mac + GitHub】之在另一台Mac电脑上下载GitHub的SSH链接报错
当输入git命令github项目时报错: ⇒ git clone git@github.com:/TX-Class.git Cloning into 'TX-Class'... Warning: Pe ...
- 14 javaBean 组件
bean类不应该有公开的实例变量. 持续性的值应该通过 getXxx 和 setXxx 方法访问. <jsp: useBean id=”beanName” class=”package.Clas ...
- vs 常用工具
工欲善其事,必先利其器,没有好的工具,怎么能高效的开发出高质量的代码呢?本文为 ASP.NET 开发者介绍一些高效实用的工具,包括 SQL 管理,VS插件,内存管理,诊断工具等,涉及开发过程的各个环节 ...
- Switch选择语句能否作用在String【字符串】上,也就是能否这么写:Switch(一个字符串变量)?
Switch选择语句能否作用在String[字符串]上,也就是能否这么写:Switch(一个字符串变量)? 解答:不可以,只能处理int,byte,short,char,(其实是只能处理int,其它三 ...
- greenplum全量恢复gprecoverseg -F出现Unable to connect to database时的相关分析及解决方法
之前有两位朋友碰到过在对greenplum的系统构架更改后,出现全量恢复gprecoverseg -F也无法正常执行的情况. 报错信息为Unable to connect to database. R ...
- Django admin 注册多个app
class game(models.Model): content = models.TextField() def __str__(self): return 'To game %s' % self ...