tensorflow 中 name_scope 及 variable_scope 的异同
Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable
can be used with the name of the variable as argument to either create a new variable with such name or retrieve the one that was created before. This is different from using the tf.Variable
constructor which will create a new variable every time it is called (and potentially add a suffix to the variable name if a variable with such name already exists). It is for the purpose of the variable sharing mechanism that a separate type of scope (variable scope) was introduced.
As a result, we end up having two different types of scopes:
- name scope, created using
tf.name_scope
ortf.op_scope
- variable scope, created using
tf.variable_scope
ortf.variable_op_scope
Both scopes have the same effect on all operations as well as variables created using tf.Variable
, i.e. the scope will be added as a prefix to the operation or variable name.
However, name scope is ignored by tf.get_variable
. We can see that in the following example:
with tf.name_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
The only way to place a variable accessed using tf.get_variable
in a scope is to use variable scope, as in the following example:
with tf.variable_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # my_scope/var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
Finally, let's look at the difference between the different methods for creating scopes. We can group them in two categories:
tf.name_scope(name)
(for name scope) andtf.variable_scope(name_or_scope, ...)
(for variable scope) create a scope with the name specified as argumenttf.op_scope(values, name, default_name=None)
(for name scope) andtf.variable_op_scope(values, name_or_scope, default_name=None, ...)
(for variable scope) create a scope, just like the functions above, but besides the scopename
, they accept an argumentdefault_name
which is used instead ofname
when it is set toNone
. Moreover, they accept a list of tensors (values
) in order to check if all the tensors are from the same, default graph. This is useful when creating new operations, for example, see the implementation oftf.histogram_summary
.
大意是说 name_scope及variable_scope的作用都是为了不传引用而访问跨代码区域变量的一种方式,其内部功能是在其代码块内显式创建的变量都会带上scope前缀(如上面例子中的a),这一点它们几乎一样。而它们的差别是,在其作用域中获取变量,它们对 tf.get_variable() 函数的作用是一个会自动添加前缀,一个不会添加前缀。
tensorflow 中 name_scope 及 variable_scope 的异同的更多相关文章
- tensorflow 中 name_scope和variable_scope
import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable( ...
- tensorflow中使用tf.variable_scope和tf.get_variable的ValueError
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...
- tensorflow中命名空间、变量命名的问题
1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:t ...
- Tensorflow中的name_scope和variable_scope
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行 ...
- TensorFlow学习笔记(1):variable与get_variable, name_scope()和variable_scope()
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命 ...
- TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...
- [翻译] Tensorflow中name scope和variable scope的区别是什么
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...
- TensorFlow中的变量命名以及命名空间.
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, t ...
- tensorflow中slim模块api介绍
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35 http://blog.csdn.net/guvcolie/article/details/77686 ...
随机推荐
- js动态显示时间
<!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...
- Java 调用 C/C++ 之 JNA 系列实战篇 —— 输出char * (六)
一. 工作环境 1. windows (64位), JDK (64位),dll文件 (64位) 2. Linux (64位), JDK (64位),so文件 (64位) 3. JNA的官方资 ...
- Archive for required library xx cannot be read or is not a valid ZIP file
原因:maven下载的jar包有问题,导致maven编译的时候出错 解决方法:找到jar包所在的文件路径,在网上重新下载个相同版本的jar包,问题解决
- javascript深入理解js闭包【手动加精】
http://www.jb51.net/article/24101.htm 闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现. 一.变量的作用 ...
- a5调试
1 generating rsa key...[ 4.452000] mmc0: error -110 whilst initialising SD card[ 5.602000] mmc ...
- org.apache.jasper.JasperException: The absolute uri: http://java.sun.com/jsp/jstl/core cannot be resolved in ……
编程中遇到:org.apache.jasper.JasperException: The absolute uri: http://java.sun.com/jsp/jstl/core cannot ...
- 【ATX学习大纲】【ATX基于uiautomator2+Python学习】之Android自动化
github学习地址:https://github.com/openatx/uiautomator2 <_io.TextIOWrapper name='<stderr>' mode= ...
- XMLHttpRequest的withCredentials属性
最近对接第三方网站出现一下错误:Access to XMLHttpRequest at 'https://third.site.com/request_url' from origin 'https: ...
- java垃圾回收算法和垃圾收集器
垃圾收集算法.垃圾回收算法.java垃圾收集器 目录1. 垃圾收集算法1)引用计数法2)根搜索法2. 垃圾回收算法1)复制算法2)标记-清除算法3)标记-整理算法4)分代收集算法3. java垃圾收集 ...
- 简单的php基于curl的反向代理程序
起因: 经理:需要实现一个反向代理? 我: 简单,nginx分分钟配置好. 经理:嗯?没有nginx? 我: nodejs也行啊,网上有例子分分钟搞定. 经理:嗯?只有虚拟主机,只能上传php程序? ...