Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable can be used with the name of the variable as argument to either create a new variable with such name or retrieve the one that was created before. This is different from using the tf.Variable constructor which will create a new variable every time it is called (and potentially add a suffix to the variable name if a variable with such name already exists). It is for the purpose of the variable sharing mechanism that a separate type of scope (variable scope) was introduced.

As a result, we end up having two different types of scopes:

Both scopes have the same effect on all operations as well as variables created using tf.Variable, i.e. the scope will be added as a prefix to the operation or variable name.

However, name scope is ignored by tf.get_variable. We can see that in the following example:

with tf.name_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0

The only way to place a variable accessed using tf.get_variable in a scope is to use variable scope, as in the following example:

with tf.variable_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # my_scope/var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0

Finally, let's look at the difference between the different methods for creating scopes. We can group them in two categories:

  • tf.name_scope(name) (for name scope) and tf.variable_scope(name_or_scope, ...)(for variable scope) create a scope with the name specified as argument
  • tf.op_scope(values, name, default_name=None) (for name scope) and tf.variable_op_scope(values, name_or_scope, default_name=None, ...) (for variable scope) create a scope, just like the functions above, but besides the scope name, they accept an argument default_name which is used instead of name when it is set to None. Moreover, they accept a list of tensors (values) in order to check if all the tensors are from the same, default graph. This is useful when creating new operations, for example, see the implementation of tf.histogram_summary.

大意是说 name_scope及variable_scope的作用都是为了不传引用而访问跨代码区域变量的一种方式,其内部功能是在其代码块内显式创建的变量都会带上scope前缀(如上面例子中的a),这一点它们几乎一样。而它们的差别是,在其作用域中获取变量,它们对 tf.get_variable() 函数的作用是一个会自动添加前缀,一个不会添加前缀。

tensorflow 中 name_scope 及 variable_scope 的异同的更多相关文章

  1. tensorflow 中 name_scope和variable_scope

    import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable( ...

  2. tensorflow中使用tf.variable_scope和tf.get_variable的ValueError

    ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...

  3. tensorflow中命名空间、变量命名的问题

    1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:t ...

  4. Tensorflow中的name_scope和variable_scope

    Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行 ...

  5. TensorFlow学习笔记(1):variable与get_variable, name_scope()和variable_scope()

    Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命 ...

  6. TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同

    tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...

  7. [翻译] Tensorflow中name scope和variable scope的区别是什么

    翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...

  8. TensorFlow中的变量命名以及命名空间.

    What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, t ...

  9. tensorflow中slim模块api介绍

    tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35   http://blog.csdn.net/guvcolie/article/details/77686 ...

随机推荐

  1. js动态显示时间

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="Content-Type" content ...

  2. Java 调用 C/C++ 之 JNA 系列实战篇 —— 输出char * (六)

    一. 工作环境 1. windows (64位), JDK (64位),dll文件 (64位) 2. Linux (64位),      JDK (64位),so文件 (64位) 3. JNA的官方资 ...

  3. Archive for required library xx cannot be read or is not a valid ZIP file

    原因:maven下载的jar包有问题,导致maven编译的时候出错 解决方法:找到jar包所在的文件路径,在网上重新下载个相同版本的jar包,问题解决

  4. javascript深入理解js闭包【手动加精】

    http://www.jb51.net/article/24101.htm 闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现.   一.变量的作用 ...

  5. a5调试

    1 generating rsa key...[    4.452000] mmc0: error -110 whilst initialising SD card[    5.602000] mmc ...

  6. org.apache.jasper.JasperException: The absolute uri: http://java.sun.com/jsp/jstl/core cannot be resolved in ……

    编程中遇到:org.apache.jasper.JasperException: The absolute uri: http://java.sun.com/jsp/jstl/core cannot ...

  7. 【ATX学习大纲】【ATX基于uiautomator2+Python学习】之Android自动化

    github学习地址:https://github.com/openatx/uiautomator2 <_io.TextIOWrapper name='<stderr>' mode= ...

  8. XMLHttpRequest的withCredentials属性

    最近对接第三方网站出现一下错误:Access to XMLHttpRequest at 'https://third.site.com/request_url' from origin 'https: ...

  9. java垃圾回收算法和垃圾收集器

    垃圾收集算法.垃圾回收算法.java垃圾收集器 目录1. 垃圾收集算法1)引用计数法2)根搜索法2. 垃圾回收算法1)复制算法2)标记-清除算法3)标记-整理算法4)分代收集算法3. java垃圾收集 ...

  10. 简单的php基于curl的反向代理程序

    起因: 经理:需要实现一个反向代理? 我:  简单,nginx分分钟配置好. 经理:嗯?没有nginx? 我: nodejs也行啊,网上有例子分分钟搞定. 经理:嗯?只有虚拟主机,只能上传php程序? ...