tensorflow 中 name_scope 及 variable_scope 的异同
Let's begin by a short introduction to variable sharing. It is a mechanism in TensorFlow that allows for sharing variables accessed in different parts of the code without passing references to the variable around. The method tf.get_variable
can be used with the name of the variable as argument to either create a new variable with such name or retrieve the one that was created before. This is different from using the tf.Variable
constructor which will create a new variable every time it is called (and potentially add a suffix to the variable name if a variable with such name already exists). It is for the purpose of the variable sharing mechanism that a separate type of scope (variable scope) was introduced.
As a result, we end up having two different types of scopes:
- name scope, created using
tf.name_scope
ortf.op_scope
- variable scope, created using
tf.variable_scope
ortf.variable_op_scope
Both scopes have the same effect on all operations as well as variables created using tf.Variable
, i.e. the scope will be added as a prefix to the operation or variable name.
However, name scope is ignored by tf.get_variable
. We can see that in the following example:
with tf.name_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
The only way to place a variable accessed using tf.get_variable
in a scope is to use variable scope, as in the following example:
with tf.variable_scope("my_scope"):
v1 = tf.get_variable("var1", [1], dtype=tf.float32)
v2 = tf.Variable(1, name="var2", dtype=tf.float32)
a = tf.add(v1, v2) print(v1.name) # my_scope/var1:0
print(v2.name) # my_scope/var2:0
print(a.name) # my_scope/Add:0
Finally, let's look at the difference between the different methods for creating scopes. We can group them in two categories:
tf.name_scope(name)
(for name scope) andtf.variable_scope(name_or_scope, ...)
(for variable scope) create a scope with the name specified as argumenttf.op_scope(values, name, default_name=None)
(for name scope) andtf.variable_op_scope(values, name_or_scope, default_name=None, ...)
(for variable scope) create a scope, just like the functions above, but besides the scopename
, they accept an argumentdefault_name
which is used instead ofname
when it is set toNone
. Moreover, they accept a list of tensors (values
) in order to check if all the tensors are from the same, default graph. This is useful when creating new operations, for example, see the implementation oftf.histogram_summary
.
大意是说 name_scope及variable_scope的作用都是为了不传引用而访问跨代码区域变量的一种方式,其内部功能是在其代码块内显式创建的变量都会带上scope前缀(如上面例子中的a),这一点它们几乎一样。而它们的差别是,在其作用域中获取变量,它们对 tf.get_variable() 函数的作用是一个会自动添加前缀,一个不会添加前缀。
tensorflow 中 name_scope 及 variable_scope 的异同的更多相关文章
- tensorflow 中 name_scope和variable_scope
import tensorflow as tf with tf.name_scope("hello") as name_scope: arr1 = tf.get_variable( ...
- tensorflow中使用tf.variable_scope和tf.get_variable的ValueError
ValueError: Variable conv1/weights1 already exists, disallowed. Did you mean to set reuse=True in Va ...
- tensorflow中命名空间、变量命名的问题
1.简介 对比分析tf.Variable / tf.get_variable | tf.name_scope / tf.variable_scope的异同 2.说明 tf.Variable创建变量:t ...
- Tensorflow中的name_scope和variable_scope
Tensorflow是一个编程模型,几乎成为了一种编程语言(里面有变量.有操作......). Tensorflow编程分为两个阶段:构图阶段+运行时. Tensorflow构图阶段其实就是在对图进行 ...
- TensorFlow学习笔记(1):variable与get_variable, name_scope()和variable_scope()
Variable tensorflow中有两个关于variable的op,tf.Variable()与tf.get_variable()下面介绍这两个的区别 使用tf.Variable时,如果检测到命 ...
- TensorFlow中的L2正则化函数:tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()的用法与异同
tf.nn.l2_loss()与tf.contrib.layers.l2_regularizerd()都是TensorFlow中的L2正则化函数,tf.contrib.layers.l2_regula ...
- [翻译] Tensorflow中name scope和variable scope的区别是什么
翻译自:https://stackoverflow.com/questions/35919020/whats-the-difference-of-name-scope-and-a-variable-s ...
- TensorFlow中的变量命名以及命名空间.
What: 在Tensorflow中, 为了区别不同的变量(例如TensorBoard显示中), 会需要命名空间对不同的变量进行命名. 其中常用的两个函数为: tf.variable_scope, t ...
- tensorflow中slim模块api介绍
tensorflow中slim模块api介绍 翻译 2017年08月29日 20:13:35 http://blog.csdn.net/guvcolie/article/details/77686 ...
随机推荐
- MapReduce实战(六)共同粉丝
需求: 利用mapReduce实现类似微博中查找共同粉丝的功能.如下: A:B,C,D,F,E,OB:A,C,E,KC:F,A,D,ID:A,E,F,LE:B,C,D,M,LF:A,B,C,D,E,O ...
- EasyUI获取DataGrid中某一列的所有值
function count() { var rows = $('#dg'').datagrid('getRows')//获取当前页的数据行 var total = 0; for (var i = 0 ...
- python笔记6:常用模块
模块,模块就是封装了特殊功能的代码. 模块分为三种: 自定义模块 第三方模块 内置模块 1.自定义模块 自定义模块就是自己定义的模块,如何import自定义模块,如下: (1)主程序与模块程序在同一目 ...
- 实现Netty服务器与CocosCreate通信
尽量采用无锁化Netty通信处理棋牌房间逻辑 一,棋牌类服务器的特点 1,棋牌类不分区不分服 一般来说,棋牌游戏都是不分区不分服的.所以棋牌类服务器要满足随着用户量的增加而扩展的需要,所以需要设计Ga ...
- ABP中连接已有数据库执行Sql或存储过程
一:在EntityFramework项目中创建类如:ZSWDbContext. public class ZSWDbContext : AbpDbContext { public ZSWDbConte ...
- .NET开发相关使用工具和框架
转自: http://www.cnblogs.com/NatureSex/archive/2011/04/21/2023265.html 开发类 visual_studio 2005-2010系列-- ...
- map实现
/*PLSQL实现Map*/ --建立序列create sequence seq_map_param_id ;--建立参数表create table map_param(id number prima ...
- Bower和Gulp集成前端资源
在我们开始前先介绍下流程: 安装node.js. 安装npm. 全局安装bower. 根目录创建 .bowerrc (可选) 在项目中安装bower 并创建 bower.json 文件,运行 bowe ...
- Bootstrap的js插件之側边栏停靠(affix)
以下是一个比較常见的側边栏停靠的样例: <!DOCTYPE html> <html lang="en"> <head> <meta cha ...
- JavaScript------获取表单信息
<form name="fname"> <input type="text" name="user" /> < ...