转:http://www.zhizhihu.com/html/y2011/3228.html

l  Theory

n  Introduction

u  Unsupervised learning by probabilistic latent semantic analysis.

u  Latent dirichlet allocation.

u  Finding scientific topics.

u  Rethinking LDA: Why Priors Matter

u  On an equivalence between PLSI and LDA

n  Variations

u  Correlated Topic Models.

u  Hierarchical topic models and the nested Chinese restaurant process.

u  Hierarchical Dirichlet processes.

u  Nonparametric Bayes pachinko allocation.

u  Topic Models with Power-Law Using Pitman-Yor Process

u  Supervised topic models.

u  Topic Models Conditioned on Arbitrary Features withDirichlet-multinomial Regression

u  Discriminative Topic Modeling based on Manifold Learning

u  Interactive Topic Modeling

u  Mixtures of hierarchical topics with pachinko allocation

u  Incorporating domain knowledge into topic modeling via DirichletForest priors

u  Conditional topic random fields

u  Markov random topic fields

u  A two-dimensional topic-aspect model for discovering multi-facetedtopics

u  Generalized component analysis for text with heterogeneousattributes

n  Inference

u  Gibbs Sampling:

l  Finding scientific topics.

l  Parameter estimation for text analysis

l  Fast collapsed gibbs sampling for latent dirichlet allocation

l  Distributed inference for latent dirichlet allocation

u  Variational EM

l  Latent dirichlet allocation.

n  Evaluation

u  Reading tea leaves: How humans interpret topic models.

u  Evaluation Methods for Topic Models

n  Online learning and scalability

u  On-line LDA: Adaptive topic models for mining text streams withapplications to topic detection and tracking

u  Online variational inference for the hierarchical Dirichlet process.

u  Online Learning for Latent Dirichlet Allocation

u  Efficient Methods for Topic Model Inference on Streaming DocumentCollections

u  Online Multiscale Dynamic Topic Models

l  Applications

n  Classification

u  DiscLDA: Discriminative learning for dimensionality reduction andclassification

u  Labeled LDA: A supervised topic model for credit attribution inmulti-labeled corpora

u  MedLDA: maximum margin supervised topic models for regression andclassification

n  Clustering

n  Network data(social network) mining

u  Link-PLSA-LDA: A new unsupervised model for topics and influence ofblogs

u  Connections between the lines: augmenting social networks with text

u  Relational topic models for document networks

u  Topic and role discovery in social networks with experiments onenron and academic email

u  Group and topic discovery from relations and text

u  Probabilistic models for discovering e-communities

u  Arnetminer: Extraction and mining of academic social networks

u  Community evolution in dynamic multi-mode networks

u  An LDA-based community structure discovery approach for large-scalesocial networks

u  Probabilistic community discovery using hierarchical latent gaussianmixture model

u  Modeling Evolutionary Behaviors for Community-based DynamicRecommendation

u  Joint group and topic discovery from relations and text

u  Social topic models for community extraction

u  Combining link and content for community detection: a discriminativeapproach

u  Topic-Link LDA: Joint Models of Topic and Author Community

u  Modeling hidden topics on document manifold

u  Topic Modeling with Network Regularization

u  Mining Topic-Level Influence in Heterogeneous Networks

u  Utilizing Context in Generative Bayesian Models for Linked Corpus

u

n  Sentiment analysis and opinion mining

u  Rated aspect summarization of short comments.

u  Learning document-level semantic properties from free-textannotations.

u  Joint sentiment/topic model for sentiment analysis.

u  Mining multi-faceted overviews of arbitrary topics in a textcollection

u  Modeling online reviews with multi-grain topic models

u  Topic sentiment mixture: modeling facets and opinions in weblogs.

u  Multiple aspect ranking using the good grief algorithm.

u  A joint model of text and aspect ratings for sentiment summarization.

u  Opinion integration through semi-supervised topic modeling

u  Holistic Sentiment Analysis Across Languages: MultilingualSupervised Latent Dirichlet Allocation.

u  Latent Aspect Rating Analysis on Review Text Data: A RatingRegression Approach

u  Aspect and Sentiment Unification Model for Online Review Analysis

u  An unsupervised aspect-sentiment model for online reviews

u  Jointly Modeling Aspects and Opinions with a MaxEnt-LDA Hybrid.

n  Evolutionary text stream mining

u  Discovering evolutionary theme patterns from text: an exploration oftemporal text mining

u  Topics over time: a non-markov continuous-time model of topicaltrends

u  Topic models over text streams: A study of batch and onlineunsupervised learning

u  Mining correlated bursty topic patterns from coordinated textstreams

u  Topic Evolution in a stream of Documents

u  Evolutionary Hierarchical Dirichlet Processes for MultipleCorrelated Time-varying Corpora

u  Studying the history of ideas using topic models

u  Mining common topics from multiple asynchronous text streams.

u  Mining Correlated Bursty Topic Patterns from Coordinated TextStreams

n  Temporal and spatial data analysis

u  A latent variable model for geographic lexical variation.

u  Dynamic topic models

u  A probabilistic approach to spatiotemporal theme pattern mining onweblogs

u  Continuous time dynamic topic models

u  Dynamic mixture models for multiple time series

u  On-Line LDA: Adaptive Topic Models for Mining Text Streams

u  Topic models over text streams: A study of batch and onlineunsupervised learning

u  Spatial latent dirichlet allocation

n  Scientific publication mining

u  Finding scientific topics.

u  The author-topic model for authors and documents.

u  Statistical entity-topic models

u  Probabilistic author-topic models for information discovery

u  The author-recipient-topic model for topic and role discovery insocial networks

u  Expertise modeling for matching papers with reviewers

u  Topic evolution and social interactions: how authors effect research

u  Joint latent topic models for text and citations

u  Co-ranking authors and documents in a heterogeneous network

u  Mixed-membership models of scientific publications

u  Modeling individual differences using Dirichlet processes

u  Multi-aspect expertise matching for review assignment

u  Topic-link LDA: joint models of topic and author community

u  Group and topic discovery from relations and their attributes

u  Exploiting Temporal Authors Interests via Temporal-Author-TopicModeling, ADMA 2009

u  Topic and Trend Detection in Text Collections Using Latent DirichletAllocation, ECIR 2009

u  Mining a digital library for influential authors.

u  Bibliometric Impact Measures Leveraging Topic Analysis.

u  Context-aware Citation Recommendation

u  Detecting Topic Evolution in Scientific Literature: How CanCitations Help?

u  Latent Interest-Topic Model: Finding the causal relationships behinddyadic data

u  A topic modeling approach and its integration into the random walkframework for academic search

n  Web data mining

u  Latent topic models for hypertext

n  Information retrieval

u  LDA-based document models for ad-hoc retrieval

u  Exploring social annotations for information retrieval

u  Modeling general and specific aspects of documents with a probabilistictopic model

u  Exploring topic-based language models for effective web informationretrieval

u  Probabilistic Models for Expert Finding

n  Information extraction

u  Employing Topic Models for Pattern-based Semantic Class Discovery

u  Combining Concept Hierarchies and Statistical Topic Models

u  A Probabilistic Approach for Adapting Information ExtractionWrappers and Discovering New Attributes

u  An Unsupervised Framework for Extracting and Normalizing ProductAttributes from Multiple Web Sites

u  Learning to Adapt Web Information Extraction Knowledge andDiscovering New Attributes via a Bayesian Approach

u  Adapting Web Information Extraction Knowledge via Mining SiteInvariant and Site Dependent Features

u  Learning to Extract and Summarize Hot Item Features from MultipleAuction Web Sites"

u  Semi-supervised Extraction of Entity Aspects Using Topic Models

n  Annotations(or Tagging, Labeling) and recommendation

u  Automatic labeling of multinomial topic models.

u  Context modeling for ranking and tagging bursty features in textstreams.

u  Learning document-level semantic properties from free-textannotations.

u  Generating summary keywords for emails using topics

u  Semantic Annotation of Frequent Patterns

u  Latent dirichlet allocation for tag recommendation

u  Tag-LDA for Scalable Real-time Tag Recommendation

u  The Topic-Perspective Model for Social Tagging Systems

u  A Probabilistic Topic-Connection Model for Automatic ImageAnnotation

u  Clustering the Tagged Web

n  Summarization

u  Topical keyphrase extraction from twitter.

u  Bayesian query-focused summarization

u  Topic-based multi-document summarization with probabilistic latentsemantic analysis

u  Multi-topic based Query-oriented Summarization

u  Multi-Document Summarization using Sentence-based Topic Models

u  Generating Impact-Based Summaries for Scientific Literature

u  Generating Comparative Summaries of Contradictory Opinions in Text

u  Rated Aspect Summarization of Short Comments

u  A Hybrid Hierarchical Model for Multi-Document Summarization

u  GENERATING TEMPLATES OF ENTITY SUMMARIES WITH AN ENTITY-ASPECT MODELAND PATTERN MINING

u  Latent dirichlet allocation and singular value decomposition basedmulti-document summarization

n  Social media mining

u  A latent variable model for geographic lexical variation.

u  Empirical study of topic modeling in twitter.

u  Characterizing micorblogs with topic models.

u  TwitterRank: finding topic-sensitive influential twitterers.

u  Comparing twitter and traditional media using topic models.

n  DB

u  Topic cube: Topic modeling for olap on multidimensional textdatabases

n  NLP tasks

u  A topic model for word sense disambiguation

u  Syntactic topic models

u  Integrating topics and syntax

u  Topic modeling: beyond bag-of-words

u  A Bayesian LDA-based model for semi-supervised part-of-speechtagging

u  Topical n-grams: Phrase and topic discovery, with an application toinformation retrieval

u  A topic model for word sense disambiguation

u  Named entity recognition in query

u  Multilingual topic models for unaligned text.

u  Markov topic models.

u  Modeling Syntactic Structures of Topics with a Nested HMM-LDA

u  Topic segmentation with an aspect hidden Markov model.

u  Polylingual Topic Models

u  A Latent Dirichlet Allocation method for Selectional Preferences

u  Improving word sense disambiguation using topic features

u  Cross-Lingual Latent Topic Extraction

u  Exploiting conversation structure in unsupervised topic segmentationfor emails

u  TOPIC MODELS FOR WORD SENSE DISAMBIGUATION AND TOKEN-BASED IDIOM

DETECTION

关于LDA的文章的更多相关文章

  1. LDA进阶(Dynamic Topic Models)

    转自:http://blog.csdn.net/hxxiaopei/article/details/8034308 http://blog.csdn.net/huagong_adu/article/d ...

  2. NLP︱LDA主题模型的应用难题、使用心得及从多元统计角度剖析

    将LDA跟多元统计分析结合起来看,那么LDA中的主题就像词主成分,其把主成分-样本之间的关系说清楚了.多元学的时候聚类分为Q型聚类.R型聚类以及主成分分析.R型聚类.主成分分析针对变量,Q型聚类针对样 ...

  3. LDA

    2 Latent Dirichlet Allocation Introduction LDA是给文本建模的一种方法,它属于生成模型.生成模型是指该模型可以随机生成可观测的数据,LDA可以随机生成一篇由 ...

  4. LDA主题模型三连击-入门/理论/代码

    目录 概况 为什么需要 LDA是什么 LDA的应用 gensim应用 数学原理 预备知识 抽取模型 样本生成 代码编写 本文将从三个方面介绍LDA主题模型--整体概况.数学推导.动手实现. 关于LDA ...

  5. 强大的矩阵奇异值分解(SVD)及其应用

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  6. 机器学习中的数学-矩阵奇异值分解(SVD)及其应用

    转自:http://www.cnblogs.com/LeftNotEasy/archive/2011/01/19/svd-and-applications.html 版权声明: 本文由LeftNotE ...

  7. 机器学习中的数学(5)-强大的矩阵奇异值分解(SVD)及其应用

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  8. SVD学习

    前言: 上一次写了关于PCA与LDA的文章,PCA的实现一般有两种,一种是用特征值分解去实现的,一种是用奇异值分解去实现的.在上篇文章中便是基于特征值分解的一种解释.特征值和奇异值在大部分人的印象中, ...

  9. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

随机推荐

  1. Python基础(3) - 数据类型:5字典类型

    Python Dictionary 是 Python 的内置数据类型之一, 它定义了键和值之间一对一的关系 .它是用{}括起来的.每个Dictionary的项的句法为:key:value. Dicti ...

  2. postgres entityframework foreignkey

    public class Model { [Key, Column("id"), DatabaseGenerated(DatabaseGeneratedOption.Identit ...

  3. B/S结构中页面间的传值

    常见的页面间的传值有session,cookie,application,server.transfer(),queryString,今天主要记录一下server.transfer()的用法. 从A页 ...

  4. vue中添加swiper轮播插件

    网上找了很多,最后还是官网最完整. https://github.com/surmon-china/vue-awesome-swiper 安装: 1.npm install vue-awesome-s ...

  5. sql server存储过程中SELECT 与 SET 对变量赋值的区别 转自Theo

    SQL Server 中对已经定义的变量赋值的方式用两种,分别是 SET 和 SELECT. 对于这两种方式的区别,SQL Server 联机丛书中已经有详细的说明,但很多时候我们 并没有注意,其实这 ...

  6. 企业为什么需要实施BPM?

    背景:众所周知,近几年企业信息化发展迅速,业务管理系统从大到小,数量众多,如ERP,SCM,PLM,CRM,EHR,OA,BI…… 等,企业的管理人员进行管理的主要手段是通过各个业务系统获得各种管理报 ...

  7. Netezza External Tables --How to use local files in external table

    FROM: http://tennysusantobi.blogspot.com/2012/08/netezza-external-tables.html Netezza External Table ...

  8. sqlserver 自增ID插入指定数据(转)

    set identity_insert 表名 ON --允许对自增列Id插入指定数据 insert into table_name(Id,Name) values(1,'test') set iden ...

  9. java 并发(三)---Thread 线程

    Thread 的状态 线程共有五种状态.分别是: (1)新建 (2)就绪 (3)运行 (4)阻塞 (5)死亡 ,下面列列举的状态需要结合状态示意图更好理解.  新建状态(New): 新创建了一个线程对 ...

  10. webservice随记

    WebService:跨平台.系统.跨语言间相互调用 CXF:Axis(Apache)-> Axis2(Apache)XFire -> CXF(Celtrix + XFire)(Apach ...