bzoj1434 [ZJOI2009]染色游戏
Description
Input
Output
Sample Input
3
HHH
HHH
2 3
HHH
TTH
2 1
T
H
Sample Output
- -
- -
HINT
对于40% 的数据,满足1 ≤ n;m ≤ 5。
对于100% 的数据,满足1 ≤ n;m ≤ 100,1 ≤ T ≤ 50。
正解:$SG$函数。
又是这种硬币问题。。我开始以为每次翻转一个矩形,然后写了个$dp$求$SG$函数并成功爆零。。
然后写一个搜索可以发现,如果$i=1$或$j=1$,$SG[i][j]=lb(max(i,j))$,否则$SG[i][j]=2^{i+j-2}$。
但是太大了,所以我们只记录二进制的每一位是否为$0$就行了。
#include <bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define lb(x) (x & -x) using namespace std; int cnt[],bin[],n,m,ans; il int gi(){
RG int x=,q=; RG char ch=getchar();
while ((ch<'' || ch>'') && ch!='-') ch=getchar();
if (ch=='-') q=-,ch=getchar();
while (ch>='' && ch<='') x=x*+ch-,ch=getchar();
return q*x;
} il char gc(){
RG char ch=getchar();
while (ch!='H' && ch!='T') ch=getchar(); return ch;
} il void get(RG int x,RG int y){
if (x==){ cnt[bin[lb(y)]]^=; return; }
if (y==){ cnt[bin[lb(x)]]^=; return; }
cnt[x+y-]^=; return;
} il void work(){
n=gi(),m=gi(),memset(cnt,,sizeof(cnt));
for (RG int i=;i<=n;++i)
for (RG int j=;j<=m;++j)
if (gc()=='T') get(i,j);
for (RG int i=;i<=;++i)
if (cnt[i]){ puts("-_-"); return; }
puts("=_="); return;
} int main(){
#ifndef ONLINE_JUDGE
freopen("color.in","r",stdin);
freopen("color.out","w",stdout);
#endif
for (RG int i=;i<=;++i) bin[i]=bin[i>>]+;
RG int T=gi(); while (T--) work(); return ;
}
bzoj1434 [ZJOI2009]染色游戏的更多相关文章
- BZOJ1434:[ZJOI2009]染色游戏(博弈论)
Description 一共n×m个硬币,摆成n×m的长方形.dongdong和xixi玩一个游戏,每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个硬币属于这个连通块并且所有其他硬 ...
- 【BZOJ1434】[ZJOI2009]染色游戏(博弈论)
[BZOJ1434][ZJOI2009]染色游戏(博弈论) 题面 BZOJ 洛谷 题解 翻硬币的游戏我似乎原来在博客里面提到过,对于这类问题,当前局面的\(SG\)函数就是所有反面朝上的硬币单一存在时 ...
- [ZJOI2009]染色游戏
Description 一共n × m 个硬币,摆成n × m 的长方形.dongdong 和xixi 玩一个游戏, 每次可以选择一个连通块,并把其中的硬币全部翻转,但是需要满足存在一个 硬币属于这个 ...
- BZOJ 1434: [ZJOI2009]染色游戏
一开始想这不$SG$裸题...然后发现100组数据...然后发现连通块是任意的求$SG$貌似要暴力枚举.... 然后想了一下1维,手动打表,每次就是队当前所有异或后缀和求$mex$,好像就是$lowb ...
- [luogu2594 ZJOI2009]染色游戏(博弈论)
传送门 Solution 对于硬币问题,结论是:当前局面的SG值等于所有背面朝上的单个硬币SG值的异或和 对于求单个背面朝上的硬币SG值...打表找规律吧 Code //By Menteur_Hxy ...
- luogu2594 [ZJOI2009]染色游戏
做法其他题解已经说得很清楚了,但似乎没有对于本题 SG 函数正确性的证明,我来口胡一下( 证明: 猜想: \[\operatorname{SG}(i,j)=\begin{cases}\operator ...
- BZOJ 1411&&Vijos 1544 : [ZJOI2009]硬币游戏【递推,快速幂】
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 897 Solved: 394[Submit][Status ...
- bzoj1411: [ZJOI2009]硬币游戏
1411: [ZJOI2009]硬币游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 965 Solved: 420[Submit][Status ...
- 题解 [SDOI2009]E&D/染色游戏/Moving Pebbles
E&D 染色游戏 Moving Pebbles E&D 题目大意 给出 \(2n\) 堆石子,\(2i-1\) 和 \(2i\) 为一组.每次可以选择一组删掉其中一堆,然后从同一组另外 ...
随机推荐
- Exists/In/Any/All/Contains操作符
Exists/In/Any/All/Contains操作符 适用场景:用于判断集合中元素,进一步缩小范围. Any 说明:用于判断集合中是否有元素满足某一条件:不延迟.(若条件为空,则集合只要不为空就 ...
- ASP.NET能知道的东西
ASP.NET能知道的东西 获取服务器电脑名: Page.Server.ManchineName 获取用户信息: Page.User 获取客户端电脑名:Page.Request.UserHostNam ...
- spring中增加自定义配置支持
spring.schemas 在使用spring时,我们会首先编写spring的配置文件,在配置文件中,我们除了使用基本的命名空间http://www.springframework.org/sche ...
- SZU5
A - Couple doubi 这种题不要想复杂,直接找规律.找不出规律就打表找规律 #include <iostream> #include <string> #inclu ...
- MySql中存储引擎MyISAM与InnoDB区别于选择
InnoDB: 支持事务处理等 不加锁读取 支持外键 支持行锁 不支持FULLTEXT类型的索引 不保存表的具体行数,扫描表来计算有多少行 DELETE 表时,是一行一行的删除 InnoDB 把数据和 ...
- python文件修改 核心5步,函数实现修改任意文件内容
文件修改 核心5步1.以读的模式打开原文件,产生句柄f12.以写的模式打开一个新文件,产生句柄f23.读取原文件的内容并将原文件需要替换的内容修改写入到新文件4.删除原文件5.把新文件重名了成原文件 ...
- flask 继承模版的基本使用1
- 02HTML-<img>
一.img的属性:alt/title alt属性是替换名字,是给搜索引擎抓取使用,当图片显示不出来时,就会显示出alt的内容: title 属性是提示文字,当鼠标移到图片上的时候会显示出来,大部分的标 ...
- Codeforces183D T-shirt
传送门 这题好神啊……(然而我连每种物品贡献独立都没看出来…… 首先$O(n^2 m)$的DP肯定都会写,然后可以发现每种物品一定是选得越多再选一个的收益就越低,因此可以用一个堆维护当前收益最高的物品 ...
- node定时任务
var schedule = require('node-schedule') require('shelljs/global'); function scheduleCronstyle(){ sch ...