【BZOJ4378】[POI2015]Logistyka 树状数组
【BZOJ4378】[POI2015]Logistyka
Description
维护一个长度为n的序列,一开始都是0,支持以下两种操作:
1.U k a 将序列中第k个数修改为a。
2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作。
每次询问独立,即每次询问不会对序列进行修改。
Input
第一行包含两个正整数n,m(1<=n,m<=1000000),分别表示序列长度和操作次数。
接下来m行为m个操作,其中1<=k,c<=n,0<=a<=10^9,1<=s<=10^9。
Output
包含若干行,对于每个Z询问,若可行,输出TAK,否则输出NIE。
Sample Input
U 1 5
U 2 7
Z 2 6
U 3 1
Z 2 6
U 2 2
Z 2 6
Z 2 1
Sample Output
TAK
NIE
TAK
题解:我们考虑什么情况下询问有解。若一个数>s,那么我们肯定贪心的每次都让它-1,但是它最多只能取s次,所以它跟s没什么区别;若一个数≤s,那我们贪心的将它取到0,它对总和的贡献就是它本身。所以综上所述,有解的条件就是 ∑min(v[i],s) (1≤i≤n)≥c*s。我们只需要维护两个树状数组,一个记录>s的数的个数,一个记录≤s的数的总和,然后只要 个数*s+总和≥c*s就行了
需要离散化,别忘开long long
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
const int maxn=1000010;
int n,m,nm;
char str[5];
struct node
{
int org;
ll num;
}p[maxn<<1];
int qa[maxn],qc[maxn];
ll ref[maxn<<1],s1[maxn],s2[maxn],v[maxn],qb[maxn];
int rd()
{
int ret=0,f=1; char gc=getchar();
while(gc<'0'||gc>'9') {if(gc=='-')f=-f; gc=getchar();}
while(gc>='0'&&gc<='9') ret=ret*10+gc-'0',gc=getchar();
return ret*f;
}
void up1(int x,ll val)
{
for(int i=x;i<=nm;i+=i&-i) s1[i]+=val;
}
void up2(int x,ll val)
{
for(int i=x;i<=nm;i+=i&-i) s2[i]+=val;
}
ll q1(int x)
{
int i=x;
ll ret=0;
for(i=x;i;i-=i&-i) ret+=s1[i];
return ret;
}
ll q2(int x)
{
int i=x;
ll ret=0;
for(i=x;i;i-=i&-i) ret+=s2[i];
return ret;
}
bool cmp(node a,node b)
{
return a.num<b.num;
}
int main()
{
n=rd(),m=rd();
int i,j,a,b;
for(i=1;i<=m;i++)
{
scanf("%s",str),qa[i]=rd(),p[i].num=rd(),p[i].org=i;
if(str[0]=='U') qc[i]=0;
else qc[i]=1;
}
sort(p+1,p+m+1,cmp);
ref[1]=0,nm=1;
for(i=1;i<=m;i++)
{
if(p[i].num>ref[nm]) ref[++nm]=p[i].num;
qb[p[i].org]=nm;
}
for(i=1;i<=n;i++) up1(1,1),v[i]=1;
for(i=1;i<=m;i++)
{
if(!qc[i])
{
up1(v[qa[i]],-1),up2(v[qa[i]],-ref[v[qa[i]]]),v[qa[i]]=qb[i];
up1(qb[i],1),up2(qb[i],ref[qb[i]]);
}
else
{
if((n-q1(qb[i]))*ref[qb[i]]+q2(qb[i])>=qa[i]*ref[qb[i]]) printf("TAK\n");
else printf("NIE\n");
}
}
return 0;
}
【BZOJ4378】[POI2015]Logistyka 树状数组的更多相关文章
- BZOJ4378[POI2015]Logistyka——树状数组
题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...
- BZOJ_4378_[POI2015]Logistyka_树状数组
BZOJ_4378_[POI2015]Logistyka_树状数组 Description 维护一个长度为n的序列,一开始都是0,支持以下两种操作: 1.U k a 将序列中第k个数修改为a. 2.Z ...
- 【bzoj4378】[POI2015]Logistyka 离散化+树状数组
题目描述 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1,询问能否进行s次操作.每次 ...
- [POI2015]LOG(树状数组)
今天考试考了这题,所以来贡献\([POI2015]LOG\)的第一篇题解.代码略丑,调了快三个小时才调出来\(AC\)代码. 对于这种小清新数据结构题,所以我觉得树状数组才是这道题的正确打开方式. 首 ...
- 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组
[BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...
- 【BZOJ4384】[POI2015]Trzy wieże 树状数组
[BZOJ4384][POI2015]Trzy wieże Description 给定一个长度为n的仅包含'B'.'C'.'S'三种字符的字符串,请找到最长的一段连续子串,使得这一段要么只有一种字符 ...
- 树状数组【洛谷P3586】 [POI2015]LOG
P3586 [POI2015]LOG 维护一个长度为n的序列,一开始都是0,支持以下两种操作:1.U k a 将序列中第k个数修改为a.2.Z c s 在这个序列上,每次选出c个正数,并将它们都减去1 ...
- BZOJ 1103: [POI2007]大都市meg [DFS序 树状数组]
1103: [POI2007]大都市meg Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2221 Solved: 1179[Submit][Sta ...
- bzoj1878--离线+树状数组
这题在线做很麻烦,所以我们选择离线. 首先预处理出数组next[i]表示i这个位置的颜色下一次出现的位置. 然后对与每种颜色第一次出现的位置x,将a[x]++. 将每个询问按左端点排序,再从左往右扫, ...
随机推荐
- 广告系统的smart pricing是什么
smart pricing这个词来源于google的Adwords系统,指的是系统能够根据流量质量对流量方的收入进行打折,为的是让广告主获得更高的ROI(投资回报率).将smart pricing的使 ...
- 产品经理PM
首先希望大家记住的就是,千万不要以为产品经理是什么高大上的光环,产品经理其实只是一种状态,一种心态而已. 大家可能看到BAT每年都会从校园里面招聘一些产品经理,尤其是我们腾讯,声称以产品为王,每年投产 ...
- nopi使用 设置列样式 宽高 设置分页符
HSSFWorkbook book = new HSSFWorkbook(); ISheet sheet = book.CreateSheet("test_01"); sheet. ...
- 自制MVC框架CRUD操作、列表、分页显示插件介绍
这里涉及到的操作都是引用自Stephen.DALService数据层.数据访问层实现方式在后文中我会仔细的说明,先说明一下数据操作集成的插件. 1).InsertAttribute 用于插入记录. 状 ...
- centos(7.0) 上 crontab 计划任务
yum install vixie-cron yum install crontabs /bin/systemctl restart crond.service #启动服务 /bin/systemc ...
- Mac 全局变量 ~/.bash_profile 文件不存在的问题
不存在就新建呗~ $ cd ~/ $ touch .bash_profile $ open -e .bash_profile 然后输入以下内容 # set color的部分是配置iterm2的字体颜色 ...
- SpringCloud系列十六:Feign使用Hystrix
1. 回顾 上文讲解了使用注解@HystrixCommand的fallbackMethod属性实现回退.然而,Feign是以接口形式工作的, 它没有方法体,前文讲解的方式显然不适用与Feign. 事实 ...
- OpenJudge百炼习题解答(C++)--题4074:积水量
题: 总时间限制: 1000ms 内存限制:65536kB 描写叙述 凹凸不平的地面每当下雨的时候总会积水.如果地面是一维的.每一块宽度都为1,高度是非负整数.那么能够用一个数组来表达一块 ...
- Atitit.数据操作dsl 的设计 ---linq 方案
Atitit.数据操作dsl 的设计 ---linq 方案 1.1. sql与api方式1 1.2. Linq方案与stream方案的选择,1 1.3. 前缀表达式 vs 中缀表达式1 1.4. 要不 ...
- migrate的使用
安装完yii2后,需要创建一张user表,这里用migrate创建 1.在dos窗口下,先cd到项目的目录,比如E:\>cd E:\Visual-AMP-x64\www\blog\blog 2. ...