原文地址:http://www.cnblogs.com/GXZlegend/p/6812435.html


题目描述

Pine开始了从S地到T地的征途。
从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。
Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助Pine求出最小方差是多少。
设方差是v,可以证明,v×m^2是一个整数。为了避免精度误差,输出结果时输出v×m^2。

输入

第一行两个数 n、m。
第二行 n 个数,表示 n 段路的长度

输出

一个数,最小方差乘以 m^2 后的值

样例输入

5 2
1 2 5 8 6

样例输出

36


题解

斜率优化(不需要二维)

所以只要维护∑m*x[i^2-2*sum*x[i]的最小值即可。

设f[i][j]为前i条路分为j段的∑最小值,那么显然有f[i][j]=f[k][j-1]+m*(sum[i]-sum[k])*(sum[i]-sum[k])-2*sum[n]*(sum[i]-sum[k])。

这样dp时间复杂度为O(n^2*m),会TLE,需要优化。

将上述dp方程平方展开并移项,得到f[k][j-1]+m*sum[j]^2+2*sum[n]*sum[j]=2*m*sum[i]*sum[j]+f[i][j]-m*sum[i]^2+2*sum[n]*sum[i]

这样可以用斜率优化来优化。

由于第二维j的存在,需要先循环第二维j,再循环第一维i,并将每次的f[i][j-1]与队列中元素比较并插入。

代码中可以看到我开了滚动数组,但好像没什么必要,直接开二维就行。

#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 3010
#define y(i , p) (f[i][p] + m * sum[i] * sum[i] + 2 * sum[n] * sum[i])
using namespace std;
typedef long long ll;
int q[N];
ll a[N] , sum[N] , f[N][2];
int main()
{
int n , m , i , j , l , r , d;
scanf("%d%d" , &n , &m);
for(i = 1 ; i <= n ; i ++ ) scanf("%lld" , &a[i]) , sum[i] = sum[i - 1] + a[i];
for(i = 1 ; i <= n ; i ++ ) f[i][1] = m * sum[i] * sum[i] - 2 * sum[n] * sum[i];
for(i = 2 ; i <= m ; i ++ )
{
l = r = 0 , d = i & 1;
for(j = 1 ; j <= n ; j ++ )
{
while(l < r && y(q[l + 1] , d ^ 1) - y(q[l] , d ^ 1) < 2 * m * sum[j] * (sum[q[l + 1]] - sum[q[l]])) l ++ ;
f[j][d] = y(q[l] , d ^ 1) - 2 * m * sum[j] * sum[q[l]] + m * sum[j] * sum[j] - 2 * sum[n] * sum[j];
while(l < r && (y(j , d ^ 1) - y(q[r] , d ^ 1)) * (sum[q[r]] - sum[q[r - 1]]) < (sum[j] - sum[q[r]]) * (y(q[r] , d ^ 1) - y(q[r - 1] , d ^ 1))) r -- ;
q[++r] = j;
}
}
printf("%lld\n" , f[n][m & 1] + sum[n] * sum[n]);
return 0;
}

【bzoj4518】[Sdoi2016]征途 斜率优化dp的更多相关文章

  1. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  2. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  3. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  4. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  5. [bzoj4518][Sdoi2016]征途-斜率优化

    Brief Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须 ...

  6. [SDOI2016]征途 —— 斜率优化DP

    时隔多年没有碰斜率优化了... 想当年被斜率优化虐的死去活来,现在看看...也就那样吧. Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计 ...

  7. [SDOI2015][bzoj4518] 征途 [斜率优化dp]

    题面 传送门 思路 把$vm^2$展开化一下式子,可以得到这样的等价公式: $vm^2=m\sum_{i=1}^m a_i^2-\sum_{i=1}^m a_i$ 那么我们要最小化的就是$\sum_{ ...

  8. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  9. P4072 [SDOI2016](BZOJ4518) 征途 [斜率优化DP]

    题目描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

随机推荐

  1. python selenum ---如何定位一组元素

    使用findElements方法定位一组对象 定位一组对象一般用于以下场景: · 批量操作对象,比如将页面上所有的checkbox都勾上 · 先获取一组对象,再在这组对象中过滤出需要具体定位的一些对象 ...

  2. Lintcode---二叉树的层次遍历(原型)

    给出一棵二叉树,返回其节点值的层次遍历(逐层从左往右访问) 您在真实的面试中是否遇到过这个题? Yes 样例 给一棵二叉树 {3,9,20,#,#,15,7} : 3 / \ 9 20 / \ 15 ...

  3. 多线程-Executor,Executors,ExecutorService,ScheduledExecutorService,AbstractExecutorService

    引用 系统启动一个新线程的成本是比较高的,因为涉及与操作系统交互.使用线程池可以很好地提高性能,尤其是当程序中需要创建大量生存期很短的线程时,更应该考虑使用线程池.线程池在系统启动时即创建大量空闲的线 ...

  4. FPGA学习(第8节)-Verilog设计电路的时序要点及时序仿真

    一个电路能跑到多少M的时钟呢? 这和电路的设计有密切联系(组合逻辑的延时),我们知道电路器件都是由一定延迟的,所以信号的仿真很重要.如果延迟时间大于时钟,就会导致时序违例,出现逻辑错误. 项目要求30 ...

  5. [gj]耶稣和撒旦的关系

    转: https://zhidao.baidu.com/question/7461904.html 人生充满试探,无论你居住在乡间或城市,都尝会受到试探,耶稣在世上的日子,也受到试探,让我们看看两处经 ...

  6. C# MessageBox 消息对话框

    在程序中,我们经常使用消息对话框给用户一定的信息提示,如在操作过程中遇到错误或程序异常,经常会使用这种方式给用于以提示.在C#中,MessageBox消息对话框位于System.Windows.For ...

  7. Jquery学习笔记(2)--五角星评分

    网购五星评分模拟: <!DOCTYPE html> <html lang="en"> <head> <meta charset=" ...

  8. lua工具库penlight--06数据(二)

    词法扫描 虽然 Lua 的字符串模式匹配是非常强大,但需要更强大的东西.pl.lexer.scan可以提供标记字符串,按标记机分类数字.字符串等. > lua -lpl Lua 5.1.4  C ...

  9. Geek们为什么都用Linux?《完全使用Linux工作-王垠》读后记

    真正开始使用Linux是从2013年某月看到王垠写的一篇<完全用Linux工作>,当时属于无比崇拜王垠的阶段,虽然在那之前常年都在电脑上装着双系统(linux,win),但linux也只能 ...

  10. Tuning 14 Using Oracle Data Storage Structures Efficiently

    90% 是Heap table Cluster 集群表, index-organized table: 就是把索引和表 和二为一了. partitioned table:表非常大, 逻辑上是一个大表, ...