1.如果一个函数在内部调用自身本身,这个函数就是递归函数。

例:计算 n! = 1 x 2 x 3 x ... x n,用函数fact(n)表示,可以看出:

fact(n) = n! = 1 x 2 x 3 x ... x (n-1) x n = (n-1)! x n = fact(n-1) x n

def fact(n):
if n==1:
return 1
return n * fact(n - 1)

递归函数的优点是定义简单,逻辑清晰。理论上,所有的递归函数都可以写成循环的方式,但循环的逻辑不如递归清晰。

  使用递归函数需要注意防止栈溢出。在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出。

>>> fact(1000)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 4, in fact
...
File "<stdin>", line 4, in fact
RuntimeError: maximum recursion depth exceeded in comparison

  解决递归调用栈溢出的方法是通过尾递归优化,事实上尾递归和循环的效果是一样的,所以,把循环看成是一种特殊的尾递归函数也是可以的。

  尾递归是指,在函数返回的时候,调用自身本身,并且,return语句不能包含表达式。这样,编译器或者解释器就可以把尾递归做优化,使递归本身无论调用多少次,都只占用一个栈帧,不会出现栈溢出的情况。

def fact(n):
return fact_iter(n, 1) def fact_iter(num, product):
if num == 1:
return product
return fact_iter(num - 1, num * product)

尾递归调用时,如果做了优化,栈不会增长,因此,无论多少次调用也不会导致栈溢出。

遗憾的是,大多数编程语言没有针对尾递归做优化,Python解释器也没有做优化,所以,即使把上面的fact(n)函数改成尾递归方式,也会导致栈溢出。

python的递归函数的更多相关文章

  1. python基础——递归函数

    python基础——递归函数 递归函数 在函数内部,可以调用其他函数.如果一个函数在内部调用自身本身,这个函数就是递归函数.举个例子,我们来计算阶乘n! = 1 x 2 x 3 x ... x n,用 ...

  2. Python之递归函数

    递归函数 初识递归函数 递归函数的定义:在一个函数里再调用这个函数本身 Python为了考虑保护内存占用情况,有一个递归深度的限制. 探究递归的默认最大深度: def foo(n): print(n) ...

  3. python:递归函数

    1,初识递归函数 1)什么是递归函数? 在函数中自己调用自己叫做递归函数 递归函数超过一定程度会报错.---RecursionError: maximum recursion dep th excee ...

  4. 【python】-- 递归函数、高阶函数、嵌套函数、匿名函数

    递归函数 在函数内部,可以调用其他函数.但是在一个函数在内部调用自身,这个函数被称为递归函数 def calc(n): print(n) if int(n/2) == 0: #结束符 return n ...

  5. python中递归函数

    python中的 递归函数,是指的是函数在函数内部调用自己的函数 需要满足两个条件,一,需要有一个明确的终止条件 二,需要函数自己在内部调用自己

  6. python 函数--递归函数

    一.递归函数的定义:在一个函数里面调用函数本身 python限制最大层数:998层 def foo(n): print(n) n+=1 foo(n) foo(1)

  7. 初识python: 递归函数 - 分解质因数

    分解质因数: 任何一个合数都可以写成几个质数相乘的形式.其中每个质数都是这个合数的因数,叫做这个合数的分解质因数.分解质因数只针对合数. 比如: 8 分解质因数是:2*2*2 10分解质因数是:2*5 ...

  8. python利用递归函数输出嵌套列表的每个元素

    1.先用 for 循环取. for item in l: if isinstance(item ,list): for newitem in item: print(newitem) else: pr ...

  9. what' the python之递归函数、二分算法与汉诺塔游戏

    what's the 递归? 递归函数的定义:在函数里可以再调用函数,如果这个调用的函数是函数本身,那么就形成了一个递归函数. 递归的最大深度为997,这个是程序强制定义的,997完全可以满足一般情况 ...

随机推荐

  1. 南阳ACM 题目275:队花的烦恼一 Java版

    队花的烦恼一 时间限制:3000 ms  |  内存限制:65535 KB 难度:1 描述 ACM队的队花C小+经常抱怨:"C语言中的格式输出中有十六.十.八进制输出,然而却没有二进制输出, ...

  2. vijos 1471 线性DP+贪心

    描述 Orz教主的成员为教主建了一个游乐场,在教主的规划下,游乐场有一排n个弹性无敌的跳跃装置,它们都朝着一个方向,对着一个巨大的湖,当人踩上去装置可以带你去这个方向无限远的地方,享受飞行的乐趣.但是 ...

  3. 记一次rsync日志报错directory has vanished

    中午两点的时候邮件告知rsync同部svn源库失败,看rsync日志报错显示如上,当时还在上课,没在公司,怀疑是不是有人动了svn的版本库,后来询问同事并通过vpn登录服务器上查看版本库是正常的,也没 ...

  4. 【51NOD】数字1的数量

    [算法]数位DP [题解]数位dp总结 之 从入门到模板 #include<cstdio> #include<algorithm> #include<cstring> ...

  5. 基本控件文档-UIButton属性---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址 //转载请注明出处--本文永久链接:http://www.cnblogs.com/Ch ...

  6. 2017ACM暑期多校联合训练 - Team 1 1001 HDU 6033 Add More Zero (数学)

    题目链接 Problem Description There is a youngster known for amateur propositions concerning several math ...

  7. 利用procdump+Mimikatz 绕过杀软获取Windows明文密码

    思路: 就是通过系统自带的procdump去下载存储用户名密码的文件(应该不能那么说这个文件,但是这样理解没问题),然后用猕猴桃读取. procdump.exe Procdump是一个轻量级的Sysi ...

  8. TCP之Nagle算法&&延迟ACK

    1. Nagle算法: 是为了减少广域网的小分组数目,从而减小网络拥塞的出现: 该算法要求一个tcp连接上最多只能有一个未被确认的未完成的小分组,在该分组ack到达之前不能发送其他的小分组,tcp需要 ...

  9. js-xlsx操作excel表格

    1导入与导出功能实现 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&quo ...

  10. An In-Depth Look at the HBase Architecture

    https://www.mapr.com/blog/in-depth-look-hbase-architecture An In-Depth Look at the HBase Architectur ...