B. Black Square
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Polycarp has a checkered sheet of paper of size n × m. Polycarp painted some of cells with black, the others remained white. Inspired by Malevich's "Black Square", Polycarp wants to paint minimum possible number of white cells with black so that all black cells form a square.

You are to determine the minimum possible number of cells needed to be painted black so that the black cells form a black square with sides parallel to the painting's sides. All the cells that do not belong to the square should be white. The square's side should have positive length.

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 100) — the sizes of the sheet.

The next n lines contain m letters 'B' or 'W' each — the description of initial cells' colors. If a letter is 'B', then the corresponding cell is painted black, otherwise it is painted white.

Output

Print the minimum number of cells needed to be painted black so that the black cells form a black square with sides parallel to the painting's sides. All the cells that do not belong to the square should be white. If it is impossible, print -1.

Examples
input
5 4
WWWW
WWWB
WWWB
WWBB
WWWW
output
5
input
1 2
BB
output
-1
input
3 3
WWW
WWW
WWW
output
1
Note

In the first example it is needed to paint 5 cells — (2, 2), (2, 3), (3, 2), (3, 3) and (4, 2). Then there will be a square with side equal to three, and the upper left corner in (2, 2).

In the second example all the cells are painted black and form a rectangle, so it's impossible to get a square.

In the third example all cells are colored white, so it's sufficient to color any cell black.

 #include <iostream>
#include <algorithm>
using namespace std;
typedef long long ll;
char a[][];
int main()
{
int n,m,ans1=;
int minx=,miny=,maxx=,maxy=,ans=;
cin>>n>>m;
for(int i=;i<=n;i++)
for(int j=;j<=m;j++)
{
cin>>a[i][j];
if(a[i][j]=='B')
{
ans++;
minx=min(i,minx);
miny=min(j,miny);
maxx=max(i,maxx);
maxy=max(j,maxy);
}
}
if(ans==) {puts("");return ;}
if(ans==) {puts("");return ;}
int xx=maxx-minx+,yy=maxy-miny+;
if(xx>m||yy>n) {puts("-1");return ;} ans=max(xx,yy)*max(xx,yy)-ans; cout<<ans<<endl;
return ;
}

B. Black Square(字符串)的更多相关文章

  1. [LeetCode] Encode String with Shortest Length 最短长度编码字符串

    Given a non-empty string, encode the string such that its encoded length is the shortest. The encodi ...

  2. [LeetCode] Decode String 解码字符串

    Given an encoded string, return it's decoded string. The encoding rule is: k[encoded_string], where ...

  3. SQL-数学、字符串、时间日期函数和类型转换

    --数学函数 --ABS绝对值,select ABS(-99)--ceiling取上限,select CEILING(4.5)--floor去下限select FLOOR(4.5)--power 几次 ...

  4. BestCoder Round #87 1002 Square Distance[DP 打印方案]

    Square Distance  Accepts: 73  Submissions: 598  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit ...

  5. sdut 2411:Pixel density(第三届山东省省赛原题,字符串处理)

    Pixel density Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描述 Pixels per inch (PPI) or pi ...

  6. 字符串核对之Boyer-Moore算法

    算法说明: 在计算机科学里,Boyer-Moore字符串搜索算法是一种非常高效的字符串搜索算法.它由Bob Boyer和J Strother Moore设计于1977年.此算法仅对搜索目标字符串(关键 ...

  7. Codeforces Round #309 (Div. 2) B. Ohana Cleans Up 字符串水题

    B. Ohana Cleans Up Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/554/pr ...

  8. C++ 字符串相关函数

    <转>自:http://zhidao.baidu.com/question/173202165.html 首先就是memcpy表头文件: #include <string.h> ...

  9. php中的字符串和正则表达式

    一.字符串类型的特点 1.PHP是弱类型语言,其他数据类型一般都可以直接应用于字符串函数操作. 1: <?php //输出345 //输出345 //先查找hello常量,若没找到,将hello ...

随机推荐

  1. CSS3知识之阴影box-shadow

    一.定义和用法 box-shadow 属性向框添加一个或多个阴影. box-shadow: h-shadow v-shadow blur spread color inset; h-shadow   ...

  2. RabbitMQ的使用总结

    RabbitMQ介绍 说明: Consumer (消费者):使用队列 Queue 从 Exchange 中获取消息的应用. Exchange (交换机):负责接收生产者的消息并把它转到到合适的队列. ...

  3. Nginx+Tomcat关于Session的管理

    前言 Nginx+Tomcat对Session的管理一直有了解,但是一直没有实际操作一遍,本文从最简单的安装启动开始,通过实例的方式循序渐进的介绍了几种管理session的方式. nginx安装配置 ...

  4. intellij idea 破解补丁激活

    一.说明 idea激活可以用JetBrains account,Activation Code注册码或者填License server网址,使用注册码的方式可以参考lanyun提供的注册码,但是有效时 ...

  5. iOS tag的使用

    一.添加标记 (标记不能为0) UIButton *backBtn = [[UIButton alloc] initWithFrame:CGRectMake(,,,)]; backBtn.backgr ...

  6. java中各种循环

    简单介绍一下java中的一些循环 package test; import org.apache.log4j.Logger; import org.junit.Test; public class F ...

  7. 【洛谷 P3194】 [HNOI2008]水平可见直线 (单调栈)

    题目链接 把线段以斜率为第一关键字,截距为第二关键字升序排序. 然后维护一个单调栈,保证栈中两两线段的交点的\(x\)坐标单调上升就行了.栈中的线段即为所求. #include <cstdio& ...

  8. 【洛谷 P5110】 块速递推(矩阵加速,分块打表)

    题目链接 掌握了分块打表法了.原来以前一直想错了... 块的大小\(size=\sqrt n\),每隔\(size\)个数打一个表,还要在\(0\text{~}size-1\)每个数打一个表. 然后就 ...

  9. Billboard HDU 2795 (线段树)

    题目链接 Problem Description At the entrance to the university, there is a huge rectangular billboard of ...

  10. vue中的表单异步校验方法封装

    在vue项目的开发中,表单的验证必不可少,在开发的过程中,用的是vue+iview的一套,我们知道iview的表单验证是基于async-validator,对于async-validator不熟悉的可 ...